Abstract
This investigation focuses on the effects of thermal dispersion in Resin Transfer Molding (RTM). A set of volume-average balance equations suitable for modeling mold filling in RTM is described and implemented in a numerical mold filling simulation. The energy equation is based on the assumption of local thermal equilibrium and includes a dispersion term. Thermal dispersion is an enhanced transport of heat due to local fluctuations in the fluid velocity and temperature away from their average values. Non-isothermal mold filling experiments are performed on a center-gated disk mold to investigate and quantify dispersion effects. Good agreement is found between the experimentally measured and numerically predicted temperatures, and a function for the transverse dispersion coefficient in a random glass fiber mat is determined. The results indicate that thermal dispersion is important in RTM processes and must be included in simulations to obtain accurate predictions.
Original language | English (US) |
---|---|
Pages | 21-40 |
Number of pages | 20 |
State | Published - 1994 |
Event | Proceedings of the 1994 International Mechanical Engineering Congress and Exposition - Chicago, IL, USA Duration: Nov 6 1994 → Nov 11 1994 |
Other
Other | Proceedings of the 1994 International Mechanical Engineering Congress and Exposition |
---|---|
City | Chicago, IL, USA |
Period | 11/6/94 → 11/11/94 |
ASJC Scopus subject areas
- Engineering(all)