Abstract
We report on a detailed characterization and analysis of thermal crosstalk in a heated microcantilever array. The fabricated heated cantilever array consists of five identical independently controlled heated cantilevers. The temperature of each cantilever can be controlled over a large temperature range, up to 900 °C, by means of an integrated solid-state resistive heater. We analyze thermal crosstalk in steady and transient operating conditions when the heated cantilever array is either in contact with a substrate or freely suspended in air. The thermal conductance between neighboring cantilevers is as high as 0.61 μW °C-1, resulting in non-negligible temperature increases in neighboring cantilevers, depending upon the operating conditions. By understanding and accounting for thermal crosstalk, it is possible to improve temperature control and temperature measurements with heated microcantilever arrays.
Original language | English (US) |
---|---|
Article number | 025001 |
Journal | Journal of Micromechanics and Microengineering |
Volume | 23 |
Issue number | 2 |
DOIs | |
State | Published - Feb 2013 |
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Mechanics of Materials
- Mechanical Engineering
- Electrical and Electronic Engineering