Thermal conduction in sub-100 nm transistors

S. Sinha, K. E. Goodson

Research output: Contribution to journalArticlepeer-review


Heat conduction in integrated circuits spans length scales across several orders of magnitude: From the lattice spacing at a few Angstroms to the substrate thickness at hundreds of micrometers. The smaller length scale becomes increasingly important in devices with feature size well below 100 nm. This paper provides an overview of sub-continuum electro-thermal transport. We use the phonon Boltzmann transport equation to model heat conduction in the device and show that phonons emitted by hot electrons in the drain create a phonon hotspot. The resulting non-equilibrium leads to increased thermal resistance within the device. At the limits of scaling, the resistance is comparable to that due to the substrate and packaging.

Original languageEnglish (US)
Pages (from-to)1148-1157
Number of pages10
JournalMicroelectronics Journal
Issue number11
StatePublished - Nov 2006
Externally publishedYes


  • Conduction
  • Heat
  • Phonon
  • Transistor

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics
  • Condensed Matter Physics
  • Surfaces, Coatings and Films
  • Electrical and Electronic Engineering


Dive into the research topics of 'Thermal conduction in sub-100 nm transistors'. Together they form a unique fingerprint.

Cite this