Thermal atomic layer etching of copper by sequential steps involving oxidation and exposure to hexafluoroacetylacetone

Elham Mohimi, Xiaoqing I. Chu, Brian B. Trinh, Shaista Babar, Gregory S. Girolami, John R. Abelson

Research output: Contribution to journalArticlepeer-review

Abstract

We describe an atomic layer etching (ALE) method for copper that involves cyclic exposure to an oxidant and hexafluoroacetylacetone (Hhfac) at 275 C. The process does not attack dielectrics such as SiO 2 or SiN x , and the surface reactions are kinetically self-limiting to afford a precise etch depth that is spatially uniform. Exposure of a copper surface to molecular oxygen, O 2 , a weak oxidant, forms a -0.3 nm thick layer of Cu 2 O, which is removed in a subsequent step by exposure to Hhfac. The etch reaction involves disproportionation of Cu(hfac) intermediates, such that -0.09 nm copper is removed per cycle. Exposure of copper to ozone, a stronger oxidant, affords -15 nm of CuO; when this oxidized surface is exposed to Hhfac, 8.4 nm of copper is removed per cycle. The etch products, Cu(hfac) 2 and H 2 O, are efficiently pumped away; H 2 O, a poor oxidant, does not attack the bare Cu surface. The roughness of the copper surface increases slowly over successive etch cycles. Thermochemical and bulk etching data indicate that this approach should work for a variety of other metals.

Original languageEnglish (US)
Pages (from-to)P491-P495
JournalECS Journal of Solid State Science and Technology
Volume7
Issue number9
DOIs
StatePublished - 2018

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials

Fingerprint

Dive into the research topics of 'Thermal atomic layer etching of copper by sequential steps involving oxidation and exposure to hexafluoroacetylacetone'. Together they form a unique fingerprint.

Cite this