Abstract
Powder metallurgy with hot isostatic pressing (PM-HIP) is an advanced alloy processing method capable of fabricating complex nuclear reactor components near-net shape, reducing the need for machining and welding. For heat exchangers and steam generators, thermal aging of PM-HIP materials must be comparable or superior to conventional castings or forgings. This study compares thermal aging effects in PM-HIP and wrought alloy 625. Isothermal aging is carried out over 400–800°C for 100 h. Both PM-HIP and wrought materials have equiaxed grains with a uniform orientation distribution. The PM-HIP material has finer grains than the wrought material at all aging conditions. Both PM-HIP and wrought materials have a comparable hardness and modulus measured by nanoindentation. Hardness remains unchanged with aging except the wrought material aged at 800°C, which exhibits softening. Overall, PM-HIP alloy 625 responds comparably to wrought alloy 625 and is superior at 800°C. Results are used to calculate a Hall–Petch coefficient.
Original language | English (US) |
---|---|
Pages (from-to) | 2837-2845 |
Number of pages | 9 |
Journal | JOM |
Volume | 71 |
Issue number | 8 |
DOIs | |
State | Published - Aug 15 2019 |
Externally published | Yes |
ASJC Scopus subject areas
- General Materials Science
- General Engineering