## Abstract

We prove that the Mott insulating state is characterized by a divergence of the electron self-energy at well-defined values of momenta in the first Brillouin zone. When particle-hole symmetry is present, the divergence obtains at the momenta of the Fermi surface for the corresponding noninteracting system. Such a divergence gives rise to a surface of zeros (the Luttinger surface) of the single-particle Green function and offers a single unifying principle of Mottness from which pseudogap phenomena, spectral weight transfer, and broad spectral features emerge in doped Mott insulators. We also show that only when particle-hole symmetry is present does the volume of the zero surface equal the particle density. We identify that the general breakdown of Luttinger's theorem in a Mott insulator arises from the breakdown of a perturbative expansion for the self-energy in the single-particle Green function around the noninteracting limit. A modified version of Luttinger's theorem is derived for special cases.

Original language | English (US) |
---|---|

Article number | 104503 |

Journal | Physical Review B - Condensed Matter and Materials Physics |

Volume | 75 |

Issue number | 10 |

DOIs | |

State | Published - Mar 7 2007 |

## ASJC Scopus subject areas

- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics