Theoretical modelling of residual and transformational stresses in SMA composites

J. B. Berman, S. R. White

Research output: Contribution to journalArticlepeer-review

Abstract

SMA composites are a class of smart materials in which shape memory alloy (SMA) actuators are embedded in a polymer matrix composite. The difference in thermal expansion between the SMA and the host material leads to residual stresses during processing. Similarly, the SMA transformations from martensite to austenite, or the reverse, also generate stresses. These stresses acting in combination can lead to SMA/epoxy interfacial debonding or microcracking of the composite phase. In this study the residual and transformational stresses are investigated for a nitinol wire embedded in a graphite/epoxy composite. A three-phase micromechanical model is developed. The nitinol wire is assumed to behave as a thermoelastic material. Nitinol austenitic and martensitic transformations are modelled using linear piecewise interpolation of experimental data. The interphase is modelled as a thermoelastic polymer. A transversely isotropic thermoelastic composite is used for the outer phase. Stress-free conditions are assumed immediately before cool down from the cure temperature. The effect of nitinol, coating and composite properties on residual and transformational stresses are evaluated. Fiber architectures favoring the axial direction decrease the magnitude of all residual stresses. A decrease in stresses at the composite/coating interface is also predicted through the use of thick, compliant coatings. Reducing the recovery strain and moving the transformation to higher temperatures were found to be most effective in reducing residual stresses.

Original languageEnglish (US)
Pages (from-to)731-743
Number of pages13
JournalSmart Materials and Structures
Volume5
Issue number6
DOIs
StatePublished - 1996

ASJC Scopus subject areas

  • Signal Processing
  • Civil and Structural Engineering
  • Atomic and Molecular Physics, and Optics
  • General Materials Science
  • Condensed Matter Physics
  • Mechanics of Materials
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Theoretical modelling of residual and transformational stresses in SMA composites'. Together they form a unique fingerprint.

Cite this