### Abstract

The Schmidt number is an entanglement measure whose logarithm quantifies the zero-error entanglement cost of generating a given quantum state using local operations and classical communication. In this paper, we show that the Schmidt number is highly nonmultiplicative in the sense that for any integer n, there exist states whose Schmidt number remains constant when taking n copies of the given state. These states also provide a rare instance in which the regularized zero-error entanglement cost can be computed exactly. We then explore the question of increasing the Schmidt number by quantum operations. We describe a class of bipartite quantum operations that preserve the Schmidt number for pure state transformations, and yet they can increase the Schmidt number by an arbitrarily large amount when generating mixed states. Our results are obtained by making connections to the resource theory of quantum coherence and generalizing the class of dephasing-covariant incoherent operations to the bipartite setting.

Original language | English (US) |
---|---|

Article number | 112204 |

Journal | Journal of Mathematical Physics |

Volume | 60 |

Issue number | 11 |

DOIs | |

State | Published - Nov 1 2019 |

### ASJC Scopus subject areas

- Statistical and Nonlinear Physics
- Mathematical Physics

## Fingerprint Dive into the research topics of 'The zero-error entanglement cost is highly non-additive'. Together they form a unique fingerprint.

## Cite this

*Journal of Mathematical Physics*,

*60*(11), [112204]. https://doi.org/10.1063/1.5087815