The VLA/ALMA Nascent Disk and Multiplicity (VANDAM) Survey of Orion Protostars. II. A Statistical Characterization of Class 0 and Class i Protostellar Disks

John J. Tobin, Patrick D. Sheehan, S. Thomas Megeath, Ana Karla Díaz-Rodríguez, Stella S.R. Offner, Nadia M. Murillo, Merel L.R. Van 'T Hoff, Ewine F. Van Dishoeck, Mayra Osorio, Guillem Anglada, Elise Furlan, Amelia M. Stutz, Nickalas Reynolds, Nicole Karnath, William J. Fischer, Magnus Persson, Leslie W. Looney, Zhi Yun Li, Ian Stephens, Claire J. ChandlerErin Cox, Michael M. Dunham, Łukasz Tychoniec, Mihkel Kama, Kaitlin Kratter, Marina Kounkel, Brian Mazur, Luke Maud, Lisa Patel, Laura Perez, Sarah I. Sadavoy, Dominique Segura-Cox, Rajeeb Sharma, Brian Stephenson, Dan M. Watson, Friedrich Wyrowski

Research output: Contribution to journalArticlepeer-review

Abstract

We have conducted a survey of 328 protostars in the Orion molecular clouds with the Atacama Large Millimeter/submillimeter Array at 0.87 mm at a resolution of ∼0.″1 (40 au), including observations with the Very Large Array at 9 mm toward 148 protostars at a resolution of ∼0.″08 (32 au). This is the largest multiwavelength survey of protostars at this resolution by an order of magnitude. We use the dust continuum emission at 0.87 and 9 mm to measure the dust disk radii and masses toward the Class 0, Class I, and flat-spectrum protostars, characterizing the evolution of these disk properties in the protostellar phase. The mean dust disk radii for the Class 0, Class I, and flat-spectrum protostars are 44.9-3.4 +5.8, 37.0-3.0 +4.9, and 28.5-2.3 +3.7 au, respectively, and the mean protostellar dust disk masses are 25.9-4.0 +7.7, 14.9-2.2 +3.8, 11.6-1.9 +3.5 M, respectively. The decrease in dust disk masses is expected from disk evolution and accretion, but the decrease in disk radii may point to the initial conditions of star formation not leading to the systematic growth of disk radii or that radial drift is keeping the dust disk sizes small. At least 146 protostellar disks (35% of 379 detected 0.87 mm continuum sources plus 42 nondetections) have disk radii greater than 50 au in our sample. These properties are not found to vary significantly between different regions within Orion. The protostellar dust disk mass distributions are systematically larger than those of Class II disks by a factor of >4, providing evidence that the cores of giant planets may need to at least begin their formation during the protostellar phase.

Original languageEnglish (US)
Article number130
JournalAstrophysical Journal
Volume890
Issue number2
DOIs
StatePublished - Feb 20 2020

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'The VLA/ALMA Nascent Disk and Multiplicity (VANDAM) Survey of Orion Protostars. II. A Statistical Characterization of Class 0 and Class i Protostellar Disks'. Together they form a unique fingerprint.

Cite this