The surreal numbers as a universal H-field

Matthias Aschenbrenner, Lou van den Dries, Joris Van Der Hoeven

Research output: Contribution to journalArticle

Abstract

We show that the natural embedding of the differential field of transseries into Conway’s field of surreal numbers with the Berarducci–Mantova derivation is an elementary embedding. We also prove that any Hardy field embeds into the field of surreals with the Berarducci–Mantova derivation.

Original languageEnglish (US)
Pages (from-to)1179-1199
Number of pages21
JournalJournal of the European Mathematical Society
Volume21
Issue number4
DOIs
StatePublished - Jan 1 2019

Keywords

  • Differential fields
  • Hardy fields
  • Surreal numbers
  • Transseries

ASJC Scopus subject areas

  • Mathematics(all)
  • Applied Mathematics

Cite this

The surreal numbers as a universal H-field. / Aschenbrenner, Matthias; van den Dries, Lou; Van Der Hoeven, Joris.

In: Journal of the European Mathematical Society, Vol. 21, No. 4, 01.01.2019, p. 1179-1199.

Research output: Contribution to journalArticle

Aschenbrenner, Matthias ; van den Dries, Lou ; Van Der Hoeven, Joris. / The surreal numbers as a universal H-field. In: Journal of the European Mathematical Society. 2019 ; Vol. 21, No. 4. pp. 1179-1199.
@article{180d727a260547db81f82fc2918d1f31,
title = "The surreal numbers as a universal H-field",
abstract = "We show that the natural embedding of the differential field of transseries into Conway’s field of surreal numbers with the Berarducci–Mantova derivation is an elementary embedding. We also prove that any Hardy field embeds into the field of surreals with the Berarducci–Mantova derivation.",
keywords = "Differential fields, Hardy fields, Surreal numbers, Transseries",
author = "Matthias Aschenbrenner and {van den Dries}, Lou and {Van Der Hoeven}, Joris",
year = "2019",
month = "1",
day = "1",
doi = "10.4171/JEMS/858",
language = "English (US)",
volume = "21",
pages = "1179--1199",
journal = "Journal of the European Mathematical Society",
issn = "1435-9855",
publisher = "European Mathematical Society Publishing House",
number = "4",

}

TY - JOUR

T1 - The surreal numbers as a universal H-field

AU - Aschenbrenner, Matthias

AU - van den Dries, Lou

AU - Van Der Hoeven, Joris

PY - 2019/1/1

Y1 - 2019/1/1

N2 - We show that the natural embedding of the differential field of transseries into Conway’s field of surreal numbers with the Berarducci–Mantova derivation is an elementary embedding. We also prove that any Hardy field embeds into the field of surreals with the Berarducci–Mantova derivation.

AB - We show that the natural embedding of the differential field of transseries into Conway’s field of surreal numbers with the Berarducci–Mantova derivation is an elementary embedding. We also prove that any Hardy field embeds into the field of surreals with the Berarducci–Mantova derivation.

KW - Differential fields

KW - Hardy fields

KW - Surreal numbers

KW - Transseries

UR - http://www.scopus.com/inward/record.url?scp=85062495462&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85062495462&partnerID=8YFLogxK

U2 - 10.4171/JEMS/858

DO - 10.4171/JEMS/858

M3 - Article

AN - SCOPUS:85062495462

VL - 21

SP - 1179

EP - 1199

JO - Journal of the European Mathematical Society

JF - Journal of the European Mathematical Society

SN - 1435-9855

IS - 4

ER -