Abstract
We present reverberation-mapping (RM) lags and black hole mass measurements using the C iv λ1549 broad emission line from a sample of 348 quasars monitored as a part of the Sloan Digital Sky Survey RM Project. Our data span four years of spectroscopic and photometric monitoring for a total baseline of 1300 days, allowing us to measure lags up to ∼750 days in the observed frame (this corresponds to a rest-frame lag of ∼300 days in a quasar at z = 1.5 and ∼190 days at z = 3). We report significant time delays between the continuum and the C iv λ1549 emission line in 48 quasars, with an estimated false-positive detection rate of 10%. Our analysis of marginal lag measurements indicates that there are on the order of ∼100 additional lags that should be recoverable by adding more years of data from the program. We use our measurements to calculate black hole masses and fit an updated C iv radius-luminosity relationship. Our results significantly increase the sample of quasars with C iv RM results, with the quasars spanning two orders of magnitude in luminosity toward the high-luminosity end of the C iv radius-luminosity relation. In addition, these quasars are located at some of the highest redshifts (z ≈ 1.4-2.8) of quasars with black hole masses measured with RM. This work constitutes the first large sample of C iv RM measurements in more than a dozen quasars, demonstrating the utility of multiobject RM campaigns.
Original language | English (US) |
---|---|
Article number | 38 |
Journal | Astrophysical Journal |
Volume | 887 |
Issue number | 1 |
DOIs | |
State | Published - Dec 10 2019 |
ASJC Scopus subject areas
- Astronomy and Astrophysics
- Space and Planetary Science