Abstract
Metapopulation models have been a popular tool for the study of epidemic spread over a network of highly populated nodes (cities, provinces, countries) and have been extensively used in the context of the ongoing COVID-19 pandemic. In the present work, we revisit such a model, bearing a particular case example in mind, namely that of the region of Andalusia in Spain during the period of the summer-fall of 2020 (i.e., between the first and second pandemic waves). Our aim is to consider the possibility of incorporation of mobility across the province nodes focusing on mobile-phone time-dependent data, but also discussing the comparison for our case example with a gravity model, as well as with the dynamics in the absence of mobility. Our main finding is that mobility is key toward a quantitative understanding of the emergence of the second wave of the pandemic and that the most accurate way to capture it involves dynamic (rather than static) inclusion of time-dependent mobility matrices based on cell-phone data. Alternatives bearing no mobility are unable to capture the trends revealed by the data in the context of the metapopulation model considered herein.
Original language | English (US) |
---|---|
Article number | 54 |
Journal | Bulletin of Mathematical Biology |
Volume | 85 |
Issue number | 6 |
DOIs | |
State | Published - Jun 2023 |
Keywords
- COVID-19 epidemic
- Gravity law
- Human mobility
- Metapopulation
ASJC Scopus subject areas
- General Environmental Science
- General Biochemistry, Genetics and Molecular Biology
- General Neuroscience
- General Agricultural and Biological Sciences
- Pharmacology
- Computational Theory and Mathematics
- Immunology
- General Mathematics