The role of aerobic fitness in cortical thickness and mathematics achievement in preadolescent children

Laura Chaddock-Heyman, Kirk I. Erickson, Caitlin Kienzler, Matthew King, Matthew B. Pontifex, Lauren B. Raine, Charles H. Hillman, Arthur F. Kramer

Research output: Contribution to journalArticlepeer-review

Abstract

Growing evidence suggests that aerobic fitness benefits the brain and cognition during childhood. The present study is the first to explore cortical brain structure of higher fit and lower fit 9-and 10-year-old children, and how aerobic fitness and cortical thickness relate to academic achievement. We demonstrate that higher fit children (>70th percentile VO2max) showed decreased gray matter thickness in superior frontal cortex, superior temporal areas, and lateral occipital cortex, coupled with better mathematics achievement, compared to lower fit children (<30th percentile VO2max). Furthermore, cortical gray matter thinning in anterior and superior frontal areas was associated with superior arithmetic performance. Together, these data add to our knowledge of the biological markers of school achievement, particularly mathematics achievement, and raise the possibility that individual differences in aerobic fitness play an important role in cortical gray matter thinning during brain maturation. The establishment of predictors of academic performance is key to helping educators focus on interventions to maximize learning and success across the lifespan.

Original languageEnglish (US)
Article numbere0134115
JournalPloS one
Volume10
Issue number8
DOIs
StatePublished - Aug 12 2015

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)
  • General

Fingerprint Dive into the research topics of 'The role of aerobic fitness in cortical thickness and mathematics achievement in preadolescent children'. Together they form a unique fingerprint.

Cite this