TY - JOUR
T1 - The residence time of water vapour in the atmosphere
AU - Gimeno, Luis
AU - Eiras-Barca, Jorge
AU - Durán-Quesada, Ana María
AU - Dominguez, Francina
AU - van der Ent, Ruud
AU - Sodemann, Harald
AU - Sánchez-Murillo, Ricardo
AU - Nieto, Raquel
AU - Kirchner, James W.
N1 - Funding Information:
L.G., R.N. and J.E.-B. were funded by the Spanish government within the LAGRIMA (RTI2018-095772-B-I00) project, funded by Ministerio de Ciencia, Innovación y Universidades, Spain, which are also funded by FEDER (European Regional Development Fund, ERDF). J.E.-B. was also supported by the Xunta de Galicia (Galician Regional Government) under grant ED481B 2018/069 and by the Fulbright Program (US Department of State). L.G., R.N. and J.E.-B. were partially supported by Xunta de Galicia, Spain under project ED413C 2017/64 ‘Programa de Consolidacion e Estructuracion de Unidades de Investigacion Competitivas (Grupos de Referencia Competitiva)’ co-funded by the European Regional Development Fund, European Union (FEDER). J.E.-B. thanks the Defense University Center at the Spanish Naval Academy (CUD-ENM) for all the support provided for this research. R.V.d.E. acknowledges funding from the Netherlands Organization for Scientific Research (NWO), project number 016.Veni.181.015. A.M.D.-Q. acknowledges support from IAEA CRP F31006 (UCR project number B9519). F.D. is supported by National Science Foundation (NSF) CAREER Award AGS 1454089. H.S. acknowledges support by the Norwegian Research Council (Project SNOWPACE, grant no. 262710) and by the European Research Council (Consolidator Grant ISLAS, project no. 773245).
Publisher Copyright:
© 2021, Springer Nature Limited.
PY - 2021/8
Y1 - 2021/8
N2 - Atmospheric water vapour residence time (WVRT) is an essential indicator of how atmospheric dynamics and thermodynamics mediate hydrological cycle responses to climate change. WVRT is also important in estimating moisture sources and sinks, linking evaporation and precipitation across spatial scales. In this Review, we outline how WVRT is shaped by the interaction between evaporation and precipitation, and, thus, reflects anthropogenic changes in the hydrological cycle. Estimates of WVRT differ owing to contrasting definitions, but these differences can be reconciled by framing WVRT as a probability density function with a mean of 8–10 days and a median of 4–5 days. WVRT varies spatially and temporally in response to regional, seasonal and synoptic-scale differences in evaporation, precipitation, long-range moisture transport and atmospheric mixing. Theory predicts, and observations confirm, that in most (but not all) regions, anthropogenic warming is increasing atmospheric humidity faster than it is speeding up rates of evaporation and precipitation. Warming is, thus, projected to increase global WVRT by 3–6% K−1, lengthening the distance travelled between evaporation sources and precipitation sinks. Future efforts should focus on data integration, joint measurement initiatives and intercomparisons, and dynamic simulations to provide a formal resolution of WVRT from both Lagrangian and Eulerian perspectives.
AB - Atmospheric water vapour residence time (WVRT) is an essential indicator of how atmospheric dynamics and thermodynamics mediate hydrological cycle responses to climate change. WVRT is also important in estimating moisture sources and sinks, linking evaporation and precipitation across spatial scales. In this Review, we outline how WVRT is shaped by the interaction between evaporation and precipitation, and, thus, reflects anthropogenic changes in the hydrological cycle. Estimates of WVRT differ owing to contrasting definitions, but these differences can be reconciled by framing WVRT as a probability density function with a mean of 8–10 days and a median of 4–5 days. WVRT varies spatially and temporally in response to regional, seasonal and synoptic-scale differences in evaporation, precipitation, long-range moisture transport and atmospheric mixing. Theory predicts, and observations confirm, that in most (but not all) regions, anthropogenic warming is increasing atmospheric humidity faster than it is speeding up rates of evaporation and precipitation. Warming is, thus, projected to increase global WVRT by 3–6% K−1, lengthening the distance travelled between evaporation sources and precipitation sinks. Future efforts should focus on data integration, joint measurement initiatives and intercomparisons, and dynamic simulations to provide a formal resolution of WVRT from both Lagrangian and Eulerian perspectives.
UR - http://www.scopus.com/inward/record.url?scp=85110677694&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85110677694&partnerID=8YFLogxK
U2 - 10.1038/s43017-021-00181-9
DO - 10.1038/s43017-021-00181-9
M3 - Review article
AN - SCOPUS:85110677694
SN - 2662-138X
VL - 2
SP - 558
EP - 569
JO - Nature Reviews Earth and Environment
JF - Nature Reviews Earth and Environment
IS - 8
ER -