The ppar activator docosahexaenoic acid prevents acetaminophen hepatotoxicity in male cd-1 mice

Kim A. Nguyen, John M. Carbone, Vanessa M. Silva, Chuan Chen, Gayle E. Hennig, Herbert E. Whiteley, José E. Manautou

Research output: Contribution to journalArticlepeer-review

Abstract

Acetaminophen (APAP)-induced hepatocellular necrosis can be prevented by treatment with peroxisome proliferators. This protection is associated with lowered protein arylation and glutathione depletion in mice. Peroxisome proliferators have been shown to activate nuclear receptors. These receptors, termed peroxisome proliferator activated receptors (PPARs), can also be activated by free fatty acids. This study was designed to determine if treatment with the PPAR activator docosahexaenoic acid (DHA) would also lower APAP toxicity. Male CD-1 mice received 250 mg DHA/kg or 500 mg clofibrate (CFB)/kg, ip, for 5 d. Controls received corn oil vehicle, ip. After overnight fasting, mice received 800 mg APAP/kg, po. At 24 h after APAP, hepatotoxicity was evident in control mice by elevated plasma sorbitol dehydrogenase activity (SDH) and histologic evidence of hepatic degeneration and necrosis. As expected, CFB pretreatment significantly decreased this. Similarly, DHA protected against APAP-induced hepatotoxicity at 24 h after challenge. However, treatment with DHA did not increase hepatic glutathione prior to APAP, as previously shown with CFB. Interestingly, DHA did not increase palmitoyl coenzyme A (CoA) oxidase activity or other biochemical parameters associated with peroxisome proliferation after 5 d of treatment at 250 mg/kg. No significant alterations in microsomal APAP glucuronidation or cytochrome P-450-mediated bioactivation were detected either. Collectively, these results show that DHA also prevents APAP-induced hepatotoxicity at 24 h after challenge. However, the association between resistance against APAP-induced liver injury, PPAR activation, and peroxisome proliferation is not clearly understood.

Original languageEnglish (US)
Pages (from-to)171-186
Number of pages16
JournalJournal of Toxicology and Environmental Health - Part A
Volume58
Issue number3
DOIs
StatePublished - 1999
Externally publishedYes

ASJC Scopus subject areas

  • Toxicology
  • Health, Toxicology and Mutagenesis

Fingerprint

Dive into the research topics of 'The ppar activator docosahexaenoic acid prevents acetaminophen hepatotoxicity in male cd-1 mice'. Together they form a unique fingerprint.

Cite this