The Power of Adaptivity in Quantum Query Algorithms

Uma Girish, Makrand Sinha, Avishay Tal, Kewen Wu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Motivated by limitations on the depth of near-term quantum devices, we study the depth-computation trade-off in the query model, where depth corresponds to the number of adaptive query rounds and the computation per layer corresponds to the number of parallel queries per round. We achieve the strongest known separation between quantum algorithms with r versus r-1 rounds of adaptivity. We do so by using the k-fold Forrelation problem introduced by Aaronson and Ambainis (SICOMP'18). For k=2r, this problem can be solved using an r round quantum algorithm with only one query per round, yet we show that any r-1 round quantum algorithm needs an exponential (in the number of qubits) number of parallel queries per round. Our results are proven following the Fourier analytic machinery developed in recent works on quantum-classical separations. The key new component in our result are bounds on the Fourier weights of quantum query algorithms with bounded number of rounds of adaptivity. These may be of independent interest as they distinguish the polynomials that arise from such algorithms from arbitrary bounded polynomials of the same degree.

Original languageEnglish (US)
Title of host publicationSTOC 2024 - Proceedings of the 56th Annual ACM Symposium on Theory of Computing
EditorsBojan Mohar, Igor Shinkar, Ryan O�Donnell
PublisherAssociation for Computing Machinery
Pages1488-1497
Number of pages10
ISBN (Electronic)9798400703836
DOIs
StatePublished - Jun 10 2024
Event56th Annual ACM Symposium on Theory of Computing, STOC 2024 - Vancouver, Canada
Duration: Jun 24 2024Jun 28 2024

Publication series

NameProceedings of the Annual ACM Symposium on Theory of Computing
ISSN (Print)0737-8017

Conference

Conference56th Annual ACM Symposium on Theory of Computing, STOC 2024
Country/TerritoryCanada
CityVancouver
Period6/24/246/28/24

Keywords

  • Forrelation
  • Fourier Analysis of Boolean Functions
  • Quantum Advantages
  • Quantum Query Algorithms
  • Query Adaptivity

ASJC Scopus subject areas

  • Software

Fingerprint

Dive into the research topics of 'The Power of Adaptivity in Quantum Query Algorithms'. Together they form a unique fingerprint.

Cite this