TY - JOUR
T1 - The Optoelectronic Nose
T2 - Colorimetric and Fluorometric Sensor Arrays
AU - Li, Zheng
AU - Askim, Jon R.
AU - Suslick, Kenneth S.
N1 - Publisher Copyright:
© 2018 American Chemical Society.
PY - 2019/1/9
Y1 - 2019/1/9
N2 - A comprehensive review on the development and state of the art of colorimetric and fluorometric sensor arrays is presented. Chemical sensing aims to detect subtle changes in the chemical environment by transforming relevant chemical or physical properties of molecular or ionic species (i.e., analytes) into an analytically useful output. Optical arrays based on chemoresponsive colorants (dyes and nanoporous pigments) probe the chemical reactivity of analytes, rather than their physical properties (e.g., mass). The chemical specificity of the olfactory system does not come from specific receptors for specific analytes (e.g., the traditional lock-and-key model of substrate-enzyme interactions), but rather olfaction makes use of pattern recognition of the combined response of several hundred olfactory receptors. In a similar fashion, arrays of chemoresponsive colorants provide high-dimensional data from the color or fluorescence changes of the dyes in these arrays as they are exposed to analytes. This provides chemical sensing with high sensitivity (often down to parts per billion levels), impressive discrimination among very similar analytes, and exquisite fingerprinting of extremely similar mixtures over a wide range of analyte types, in both the gas and liquid phases. Design of both sensor arrays and instrumentation for their analysis are discussed. In addition, the various chemometric and statistical analyses of high-dimensional data (including hierarchical cluster analysis (HCA), principal component analysis (PCA), linear discriminant analysis (LDA), support vector machines (SVMs), and artificial neural networks (ANNs)) are presented and critiqued in reference to their use in chemical sensing. A variety of applications are also discussed, including personal dosimetry of toxic industrial chemical, detection of explosives or accelerants, quality control of foods and beverages, biosensing intracellularly, identification of bacteria and fungi, and detection of cancer and disease biomarkers.
AB - A comprehensive review on the development and state of the art of colorimetric and fluorometric sensor arrays is presented. Chemical sensing aims to detect subtle changes in the chemical environment by transforming relevant chemical or physical properties of molecular or ionic species (i.e., analytes) into an analytically useful output. Optical arrays based on chemoresponsive colorants (dyes and nanoporous pigments) probe the chemical reactivity of analytes, rather than their physical properties (e.g., mass). The chemical specificity of the olfactory system does not come from specific receptors for specific analytes (e.g., the traditional lock-and-key model of substrate-enzyme interactions), but rather olfaction makes use of pattern recognition of the combined response of several hundred olfactory receptors. In a similar fashion, arrays of chemoresponsive colorants provide high-dimensional data from the color or fluorescence changes of the dyes in these arrays as they are exposed to analytes. This provides chemical sensing with high sensitivity (often down to parts per billion levels), impressive discrimination among very similar analytes, and exquisite fingerprinting of extremely similar mixtures over a wide range of analyte types, in both the gas and liquid phases. Design of both sensor arrays and instrumentation for their analysis are discussed. In addition, the various chemometric and statistical analyses of high-dimensional data (including hierarchical cluster analysis (HCA), principal component analysis (PCA), linear discriminant analysis (LDA), support vector machines (SVMs), and artificial neural networks (ANNs)) are presented and critiqued in reference to their use in chemical sensing. A variety of applications are also discussed, including personal dosimetry of toxic industrial chemical, detection of explosives or accelerants, quality control of foods and beverages, biosensing intracellularly, identification of bacteria and fungi, and detection of cancer and disease biomarkers.
UR - http://www.scopus.com/inward/record.url?scp=85053659109&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85053659109&partnerID=8YFLogxK
U2 - 10.1021/acs.chemrev.8b00226
DO - 10.1021/acs.chemrev.8b00226
M3 - Review article
C2 - 30207700
AN - SCOPUS:85053659109
SN - 0009-2665
VL - 119
SP - 231
EP - 292
JO - Chemical reviews
JF - Chemical reviews
IS - 1
ER -