The neurobiology of preovulatory and estradiol-induced gonadotropin- releasing hormone surges

Catherine A. Christian, Suzanne M. Moenter

Research output: Contribution to journalReview articlepeer-review

Abstract

Ovarian steroids normally exert homeostatic negative feedback on GnRH release. During sustained exposure to elevated estradiol in the late follicular phase of the reproductive cycle, however, the feedback action of estradiol switches to positive, inducing a surge of GnRH release from the brain, which signals the pituitary LH surge that triggers ovulation. In rodents, this switch appears dependent on a circadian signal that times the surge to a specific time of day (e.g., late afternoon in nocturnal species). Although the precise nature of this daily signal and the mechanism of the switch from negative to positive feedback have remained elusive, work in the past decade has provided much insight into the role of circadian/diurnal and estradiol-dependent signals in GnRH/LH surge regulation and timing. Here we review the current knowledge of the neurobiology of the GnRH surge, in particular the actions of estradiol on GnRH neurons and their synaptic afferents, the regulation of GnRH neurons by fast synaptic transmission mediated by the neurotransmitters γ-aminobutyric acid and glutamate, and the host of excitatory and inhibitory neuromodulators including kisspeptin, vasoactive intestinal polypeptide, catecholamines, neurokinin B, and RFamide-related peptides, that appear essential for GnRH surge regulation, and ultimately ovulation and fertility.

Original languageEnglish (US)
Pages (from-to)544-577
Number of pages34
JournalEndocrine reviews
Volume31
Issue number4
DOIs
StatePublished - Aug 2010
Externally publishedYes

ASJC Scopus subject areas

  • Endocrinology, Diabetes and Metabolism
  • Endocrinology

Fingerprint Dive into the research topics of 'The neurobiology of preovulatory and estradiol-induced gonadotropin- releasing hormone surges'. Together they form a unique fingerprint.

Cite this