Abstract
Let I be an ideal of height d in a regular local ring (R, m, k = R/m) of dimension n and let Ω denote the canonical module of R/. I. In this paper we first prove the equivalence of the following: the non-vanishing of the edge homomorhpism ηd:ExtRn-d(k,Ω)→ExtRn(k,R), the validity of the order ideal conjecture for regular local rings, and the validity of the monomial conjecture for all local rings. Next we prove several special cases of the order ideal conjecture/monomial conjecture.
Original language | English (US) |
---|---|
Pages (from-to) | 123-138 |
Number of pages | 16 |
Journal | Journal of Algebra |
Volume | 454 |
DOIs | |
State | Published - May 15 2016 |
Keywords
- Commutative algebra
- Edge homomorphism in a spectral sequence
- Finite projective dimension
- Monomial conjecture
- Order ideal conjecture
- Primary
- Regular local ring
- Secondary
- Syzygies
ASJC Scopus subject areas
- Algebra and Number Theory