TY - JOUR
T1 - The location of the active site of blood coagulation factor VIIa above the membrane surface and its reorientation upon association with tissue factor
T2 - A fluorescence energy transfer study
AU - McCallum, Christine D.
AU - Hapak, Raymond C.
AU - Neuenschwander, Pierre F.
AU - Morrissey, James H.
AU - Johnson, Arthur E.
PY - 1996
Y1 - 1996
N2 - The topography of membrane-bound blood coagulation factor VIIa (fVIIa) was examined by positioning a fluorescein dye in the active site of fVIIa via a tripeptide tether to yield fluorescein-D-phenylalanyl-L-prolyl-L-arginyl- fVIIa (FI-FPR-fVIIa). The location of the active-site probe relative to the membrane surface was determined, both in the presence and absence of tissue factor (TF), using fluorescence energy transfer between the fluorescein dye and octadecylrhodamine (OR) at the phospholipid vesicle surface. When FI- FPR-fVIIa was titrated with phospholipid vesicles containing OR, the magnitude of OR-, calcium ion-, and phosphatidylserine-dependent fluorescence energy transfer revealed that the average distance of closest approach between fluorescein in the active site of fVIIa and OR at the vesicle surface is 82 Å assuming a random orientation of donor and acceptor dyes (κ2 = 2/3; the orientational uncertainty totals ~10%). The active site of fVIIa is therefore located far above the membrane surface, and the elongated fVIIa molecule must bind at one end to the membrane and project approximately perpendicularly out of the membrane. When FI-FPR-fVIIa was titrated with vesicles that contained TF, the efficiency of energy transfer was increased by a TF-dependent translational and/or rotational movement of the fVIIa protease domain relative to the membrane surface. If this movement was solely translational, the height of the active site of fVIIa was lowered by an average of 6 Å after binding to TF. The association of fVIIa with TF on the membrane surface therefore causes a significant reorientation of the active site relative to the membrane surface. This cofactor-dependent realignment of the active-site groove presumably facilitates and optimizes fVIIa cleavage of its membrane-bound substrates.
AB - The topography of membrane-bound blood coagulation factor VIIa (fVIIa) was examined by positioning a fluorescein dye in the active site of fVIIa via a tripeptide tether to yield fluorescein-D-phenylalanyl-L-prolyl-L-arginyl- fVIIa (FI-FPR-fVIIa). The location of the active-site probe relative to the membrane surface was determined, both in the presence and absence of tissue factor (TF), using fluorescence energy transfer between the fluorescein dye and octadecylrhodamine (OR) at the phospholipid vesicle surface. When FI- FPR-fVIIa was titrated with phospholipid vesicles containing OR, the magnitude of OR-, calcium ion-, and phosphatidylserine-dependent fluorescence energy transfer revealed that the average distance of closest approach between fluorescein in the active site of fVIIa and OR at the vesicle surface is 82 Å assuming a random orientation of donor and acceptor dyes (κ2 = 2/3; the orientational uncertainty totals ~10%). The active site of fVIIa is therefore located far above the membrane surface, and the elongated fVIIa molecule must bind at one end to the membrane and project approximately perpendicularly out of the membrane. When FI-FPR-fVIIa was titrated with vesicles that contained TF, the efficiency of energy transfer was increased by a TF-dependent translational and/or rotational movement of the fVIIa protease domain relative to the membrane surface. If this movement was solely translational, the height of the active site of fVIIa was lowered by an average of 6 Å after binding to TF. The association of fVIIa with TF on the membrane surface therefore causes a significant reorientation of the active site relative to the membrane surface. This cofactor-dependent realignment of the active-site groove presumably facilitates and optimizes fVIIa cleavage of its membrane-bound substrates.
UR - http://www.scopus.com/inward/record.url?scp=0029903723&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0029903723&partnerID=8YFLogxK
U2 - 10.1074/jbc.271.45.28168
DO - 10.1074/jbc.271.45.28168
M3 - Article
C2 - 8910432
AN - SCOPUS:0029903723
SN - 0021-9258
VL - 271
SP - 28168
EP - 28175
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 45
ER -