The gUN violence database: A new task and data set for NLP

Ellie Pavlick, Heng Ji, Xiaoman Pan, Chris Callison-Burch

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We argue that NLP researchers are especially well-positioned to contribute to the national discussion about gun violence. Reasoning about the causes and outcomes of gun violence is typically dominated by politics and emotion, and data-driven research on the topic is stymied by a shortage of data and a lack of federal funding. However, data abounds in the form of unstructured text from news articles across the country. This is an ideal application of NLP technologies, such as relation extraction, coreference resolution, and event detection. We introduce a new and growing dataset, the Gun Violence Database, in order to facilitate the adaptation of current NLP technologies to the domain of gun violence, thus enabling better social science research on this important and under-resourced problem.

Original languageEnglish (US)
Title of host publicationEMNLP 2016 - Conference on Empirical Methods in Natural Language Processing, Proceedings
PublisherAssociation for Computational Linguistics (ACL)
Pages1018-1024
Number of pages7
ISBN (Electronic)9781945626258
DOIs
StatePublished - 2016
Externally publishedYes
Event2016 Conference on Empirical Methods in Natural Language Processing, EMNLP 2016 - Austin, United States
Duration: Nov 1 2016Nov 5 2016

Publication series

NameEMNLP 2016 - Conference on Empirical Methods in Natural Language Processing, Proceedings

Conference

Conference2016 Conference on Empirical Methods in Natural Language Processing, EMNLP 2016
Country/TerritoryUnited States
CityAustin
Period11/1/1611/5/16

ASJC Scopus subject areas

  • Computer Science Applications
  • Information Systems
  • Computational Theory and Mathematics

Fingerprint

Dive into the research topics of 'The gUN violence database: A new task and data set for NLP'. Together they form a unique fingerprint.

Cite this