TY - JOUR
T1 - The generating degree of ℂp
AU - Alexandru, Victor
AU - Popescu, Nicolae
AU - Zaharescu, Alexandru
PY - 2001/3
Y1 - 2001/3
N2 - The generating degree gdeg(A) of a topological commutative ring A with char A = 0 is the cardinality of the smallest subset M of A for which the subring ℤ[M] is dense in A. For a prime number p, ℂp denotes the topological completion of an algebraic closure of the field ℚp of p-adic numbers. We prove that gdeg(ℂp) = 1, i.e., there exists t in ℂp such that ℤ[t] is dense in ℂp. We also compute gdeg(A(U)) where A(U) is the ring of rigid analytic functions defined on a ball U in ℂp. If U is a closed ball then gdeg(A(U)) = 2 while if U is an open ball then gdeg(A(U)) is infinite. We show more generally that gdeg(A(U)) is finite for any affinoid U in P1(ℂp) and gdeg(A(U)) is infinite for any wide open subset U of P1(ℂp).
AB - The generating degree gdeg(A) of a topological commutative ring A with char A = 0 is the cardinality of the smallest subset M of A for which the subring ℤ[M] is dense in A. For a prime number p, ℂp denotes the topological completion of an algebraic closure of the field ℚp of p-adic numbers. We prove that gdeg(ℂp) = 1, i.e., there exists t in ℂp such that ℤ[t] is dense in ℂp. We also compute gdeg(A(U)) where A(U) is the ring of rigid analytic functions defined on a ball U in ℂp. If U is a closed ball then gdeg(A(U)) = 2 while if U is an open ball then gdeg(A(U)) is infinite. We show more generally that gdeg(A(U)) is finite for any affinoid U in P1(ℂp) and gdeg(A(U)) is infinite for any wide open subset U of P1(ℂp).
UR - http://www.scopus.com/inward/record.url?scp=0041032618&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0041032618&partnerID=8YFLogxK
U2 - 10.4153/CMB-2001-001-1
DO - 10.4153/CMB-2001-001-1
M3 - Article
AN - SCOPUS:0041032618
VL - 44
SP - 3
EP - 11
JO - Canadian Mathematical Bulletin
JF - Canadian Mathematical Bulletin
SN - 0008-4395
IS - 1
ER -