TY - GEN
T1 - The future of supercomputing
AU - Snir, Marc
PY - 2014
Y1 - 2014
N2 - For over two decades, supercomputing evolved in a relatively straightforward manner: Supercomputers were assembled out of commodity microprocessors and leveraged their exponential increase in performance, due to Moore's Law. This simple model has been under stress since clock speed stopped growing a decade ago: Increased performance has required a commensurate increase in the number of concurrent threads. The evolution of device technology is likely to be even less favorable in the coming decade: The growth in CMOS performance is nearing its end, and no alternative technology is ready to replace CMOS. The continued shrinking of device size requires increasingly expensive technologies, and may not lead to improvements in cost/performance ratio; at which point, it ceases to make sense for commodity technology. These obstacles need not imply stagnation in supercomputer performance. In the long run, new computing models will come to the rescue. In the short run, more exotic, non-commodity device technologies can provide two or more orders of magnitude improvements in performance. Finally, better hardware and software architectures can significantly increase the efficiency of scientific computing platforms. While continued progress is possible, it will require a significant international research effort and major investments in future large-scale "computational instruments".
AB - For over two decades, supercomputing evolved in a relatively straightforward manner: Supercomputers were assembled out of commodity microprocessors and leveraged their exponential increase in performance, due to Moore's Law. This simple model has been under stress since clock speed stopped growing a decade ago: Increased performance has required a commensurate increase in the number of concurrent threads. The evolution of device technology is likely to be even less favorable in the coming decade: The growth in CMOS performance is nearing its end, and no alternative technology is ready to replace CMOS. The continued shrinking of device size requires increasingly expensive technologies, and may not lead to improvements in cost/performance ratio; at which point, it ceases to make sense for commodity technology. These obstacles need not imply stagnation in supercomputer performance. In the long run, new computing models will come to the rescue. In the short run, more exotic, non-commodity device technologies can provide two or more orders of magnitude improvements in performance. Finally, better hardware and software architectures can significantly increase the efficiency of scientific computing platforms. While continued progress is possible, it will require a significant international research effort and major investments in future large-scale "computational instruments".
KW - exascale
KW - high-performance computing
UR - http://www.scopus.com/inward/record.url?scp=84903794183&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84903794183&partnerID=8YFLogxK
U2 - 10.1145/2597652.2616585
DO - 10.1145/2597652.2616585
M3 - Conference contribution
AN - SCOPUS:84903794183
SN - 9781450326421
T3 - Proceedings of the International Conference on Supercomputing
SP - 261
EP - 262
BT - ICS 2014 - Proceedings of the 28th ACM International Conference on Supercomputing
PB - Association for Computing Machinery
T2 - 28th ACM International Conference on Supercomputing, ICS 2014
Y2 - 10 June 2014 through 13 June 2014
ER -