The Formation of Cytochrome P-450 from Cytochrome P-420 Is Promoted by Spermine

Gaston Hui Bon Hoa, Carmelo Di Primo, Marc Geze, Pierre Douzou, Jack A. Kornblatt, Stephen G. Sligar

Research output: Contribution to journalArticlepeer-review


This paper is concerned with camphor-bound bacterial cytochrome P-450 and processes that alter its spin-state equilibrium and influence its transition to the nonactive form, cytochrome P-420, as well as its renaturation to the native camphor-bound cytochrome P-450. Spermine, a polycation carrying a charge of 4+, and potassium, a monovalent cation, were shown to differently cause an increase of high-spin content of camphor-bound cytochrome P-450. The spermine-induced spin transition saturates around 75% of the high spin; a further addition of KCl to the spermine-containing sample shifted the spin state to 95% of the high spin. The volume change of these spin transitions as measured by the use of high pressure indicated an excess of −40 mL/mol for the sample containing potassium as compared to that containing spermine. These results suggest that the proposed privileged site for potassium has not been occupied by spermine and that pressure forces both the camphor and the potassium ion from its sites, allowing solvent movement into the protein as well as ordering of solvent by the excluded camphor and potassium. Cytochrome P-420 was produced from cytochrome P-450 by hydrostatic pressure in the presence of potassium, spermine, and cysteine. Potassium cation shows a bigger effect on the stability of cytochrome P-450 than spermine or cysteine, as revealed by a higher value of the pressure of half-inactivation, P1/2, and a bigger inactivation volume change. However, potassium cation did not promote renaturation of cytochrome P-420 to cytochrome P-450 while the presence of spermine did. The rate of renaturation to cytochrome P-450 was compared with that induced by cysteine, the only previously known effector of P-420 to P-450 interconversion. A probable electrostatic binding site for spermine is suggested and discussed.

Original languageEnglish (US)
Pages (from-to)6810-6815
Number of pages6
Issue number29
StatePublished - Jan 7 1990

ASJC Scopus subject areas

  • Biochemistry


Dive into the research topics of 'The Formation of Cytochrome P-450 from Cytochrome P-420 Is Promoted by Spermine'. Together they form a unique fingerprint.

Cite this