TY - JOUR
T1 - The fluid dynamics of river dunes
T2 - A review and some future research directions
AU - Best, Jim
PY - 2005/12/1
Y1 - 2005/12/1
N2 - [1] Dunes are present in nearly all fluvial channels and are vital in predicting flow resistance, sediment transport, and deposition within many rivers. Progress in understanding the fluid dynamics associated with alluvial dunes has been significant in the last 15 years and has witnessed huge advances in field, laboratory, and numerical investigations. Progress has been made in detailing the principal features of mean and turbulent flow over asymmetric dunes that possess flow separation in their leesides and how these forms affect both downstream boundary layer structure and stress partitioning over the dune. Additionally, the links between sediment transport over dunes and instantaneous coherent flow structures are being increasingly understood, with the feedback of dune three-dimensionality upon flow and sediment dynamics over these bed forms beginning to be recognized as vital. Such research now provides an outstanding background for beginning to address areas of greater complexity that will enable a fuller understanding of these important natural features. This review paper summarizes the principal features of mean and turbulent flow over alluvial sand dunes. Five areas are then highlighted and discussed as a possible focus for future research: (1) the influence of dune leeside angle upon flow processes in the dune wake and downstream flow field, (2) the influence of three-dimensionality in dune shape upon the generation of turbulence and distribution of bed shear stress, (3) flow field modification resulting from bed form superimposition and amalgamation, (4) the scale and topology of dune-related turbulence and its interactions with sediment transport and the flow surface, and (5) the influence of suspended sediment on the dune flow field and dune morphology.
AB - [1] Dunes are present in nearly all fluvial channels and are vital in predicting flow resistance, sediment transport, and deposition within many rivers. Progress in understanding the fluid dynamics associated with alluvial dunes has been significant in the last 15 years and has witnessed huge advances in field, laboratory, and numerical investigations. Progress has been made in detailing the principal features of mean and turbulent flow over asymmetric dunes that possess flow separation in their leesides and how these forms affect both downstream boundary layer structure and stress partitioning over the dune. Additionally, the links between sediment transport over dunes and instantaneous coherent flow structures are being increasingly understood, with the feedback of dune three-dimensionality upon flow and sediment dynamics over these bed forms beginning to be recognized as vital. Such research now provides an outstanding background for beginning to address areas of greater complexity that will enable a fuller understanding of these important natural features. This review paper summarizes the principal features of mean and turbulent flow over alluvial sand dunes. Five areas are then highlighted and discussed as a possible focus for future research: (1) the influence of dune leeside angle upon flow processes in the dune wake and downstream flow field, (2) the influence of three-dimensionality in dune shape upon the generation of turbulence and distribution of bed shear stress, (3) flow field modification resulting from bed form superimposition and amalgamation, (4) the scale and topology of dune-related turbulence and its interactions with sediment transport and the flow surface, and (5) the influence of suspended sediment on the dune flow field and dune morphology.
UR - http://www.scopus.com/inward/record.url?scp=43949134215&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=43949134215&partnerID=8YFLogxK
U2 - 10.1029/2004JF000218
DO - 10.1029/2004JF000218
M3 - Review article
AN - SCOPUS:43949134215
SN - 2169-9003
VL - 110
JO - Journal of Geophysical Research: Earth Surface
JF - Journal of Geophysical Research: Earth Surface
IS - 4
M1 - F04S02
ER -