The effect of yttrium on oxygen grain-boundary transport in polycrystalline alumina measured using Ni marker particles

Huikai Cheng, Shen J. Dillon, Hugo S. Caram, Jeffrey M. Rickman, Helen M. Chan, Martin P. Harmer

Research output: Contribution to journalArticlepeer-review

Abstract

The grain-boundary transport of oxygen in polycrystalline α-Al 2O3 (undoped and 500 ppm Y3+-doped) was studied in the temperature regime of 1100°-1500°C by monitoring the oxidation of a fine, uniform dispersion of Ni marker particles (0.5 vol%). The annealing treatments were carried out in a high-purity O2 atmosphere (>99.5%). The Ni particles, which are visibly oxidized to nickel aluminate spinel, were used to determine the depth of oxygen penetration. The thickness of the reaction zone was measured as a function of heat-treatment time and temperature, and a comparison of the oxidation rate constants and activation energies for undoped and Y3+-doped alumina was made. The results indicate that the presence of Y3+ slows oxygen grain-boundary transport in alumina by a variable factor of from 15 to 3 in the temperature regime of 1100°-1500°C. The values of the activation energy for undoped and Y3+-doped alumina were determined to be 430±40 and 497±8 kJ/mol, respectively.

Original languageEnglish (US)
Pages (from-to)2002-2008
Number of pages7
JournalJournal of the American Ceramic Society
Volume91
Issue number6
DOIs
StatePublished - Jun 2008
Externally publishedYes

ASJC Scopus subject areas

  • Ceramics and Composites
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'The effect of yttrium on oxygen grain-boundary transport in polycrystalline alumina measured using Ni marker particles'. Together they form a unique fingerprint.

Cite this