Abstract
The grain-boundary transport of oxygen in polycrystalline α-Al 2O3 (undoped and 500 ppm Y3+-doped) was studied in the temperature regime of 1100°-1500°C by monitoring the oxidation of a fine, uniform dispersion of Ni marker particles (0.5 vol%). The annealing treatments were carried out in a high-purity O2 atmosphere (>99.5%). The Ni particles, which are visibly oxidized to nickel aluminate spinel, were used to determine the depth of oxygen penetration. The thickness of the reaction zone was measured as a function of heat-treatment time and temperature, and a comparison of the oxidation rate constants and activation energies for undoped and Y3+-doped alumina was made. The results indicate that the presence of Y3+ slows oxygen grain-boundary transport in alumina by a variable factor of from 15 to 3 in the temperature regime of 1100°-1500°C. The values of the activation energy for undoped and Y3+-doped alumina were determined to be 430±40 and 497±8 kJ/mol, respectively.
Original language | English (US) |
---|---|
Pages (from-to) | 2002-2008 |
Number of pages | 7 |
Journal | Journal of the American Ceramic Society |
Volume | 91 |
Issue number | 6 |
DOIs | |
State | Published - Jun 2008 |
Externally published | Yes |
ASJC Scopus subject areas
- Ceramics and Composites
- Materials Chemistry