The devil is in the detail: A framework for macroscopic prediction via microscopic models

Yingxiang Yang, Negar Kiyavash, Le Song, Niao He

Research output: Contribution to journalConference articlepeer-review

Abstract

Macroscopic data aggregated from microscopic events are pervasive in machine learning, such as country-level COVID-19 infection statistics based on city-level data. Yet, many existing approaches for predicting macroscopic behavior only use aggregated data, leaving a large amount of fine-grained microscopic information unused. In this paper, we propose a principled optimization framework for macroscopic prediction by fitting microscopic models based on conditional stochastic optimization. The framework leverages both macroscopic and microscopic information, and adapts to individual microscopic models involved in the aggregation. In addition, we propose efficient learning algorithms with convergence guarantees. In our experiments, we show that the proposed learning framework clearly outperforms other plug-in supervised learning approaches in real-world applications, including the prediction of daily infections of COVID-19 and medicare claims.

Original languageEnglish (US)
JournalAdvances in Neural Information Processing Systems
Volume2020-December
StatePublished - 2020
Event34th Conference on Neural Information Processing Systems, NeurIPS 2020 - Virtual, Online
Duration: Dec 6 2020Dec 12 2020

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'The devil is in the detail: A framework for macroscopic prediction via microscopic models'. Together they form a unique fingerprint.

Cite this