Abstract
Redshift measurements, primarily obtained from host galaxies, are essential for inferring cosmological parameters from type Ia supernovae (SNe Ia). Matching SNe to host galaxies using images is nontrivial, resulting in a subset of SNe with mismatched hosts and thus incorrect redshifts. We evaluate the host galaxy mismatch rate and resulting biases on cosmological parameters from simulations modeled after the Dark Energy Survey 5 Yr (DES-SN5YR) photometric sample. For both DES-SN5YR data and simulations, we employ the directional light radius method for host galaxy matching. In our SN Ia simulations, we find that 1.7% of SNe are matched to the wrong host galaxy, with redshift differences between the true and matched hosts of up to 0.6. Using our analysis pipeline, we determine the shift in the dark energy equation of state parameter (Δw) due to including SNe with incorrect host galaxy matches. For SN Ia–only simulations, we find Δw = 0.0013 ± 0.0026 with constraints from the cosmic microwave background. Including core-collapse SNe and peculiar SNe Ia in the simulation, we find that Δw ranges from 0.0009 to 0.0032, depending on the photometric classifier used. This bias is an order of magnitude smaller than the expected total uncertainty on w from the DES-SN5YR sample of ∼0.03. We conclude that the bias on w from host galaxy mismatch is much smaller than the uncertainties expected from the DES-SN5YR sample, but we encourage further studies to reduce this bias through better host-matching algorithms or selection cuts.
Original language | English (US) |
---|---|
Article number | 134 |
Journal | Astrophysical Journal |
Volume | 964 |
Issue number | 2 |
Early online date | Mar 26 2024 |
DOIs | |
State | Published - Apr 1 2024 |
ASJC Scopus subject areas
- Astronomy and Astrophysics
- Space and Planetary Science
Online availability
- 10.3847/1538-4357/ad251dLicense: CC BY
Library availability
Discover UIUC Full TextRelated links
Fingerprint
Dive into the research topics of 'The Dark Energy Survey Supernova Program: Cosmological Biases from Host Galaxy Mismatch of Type Ia Supernovae'. Together they form a unique fingerprint.Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
In: Astrophysical Journal, Vol. 964, No. 2, 134, 01.04.2024.
Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - The Dark Energy Survey Supernova Program
T2 - Cosmological Biases from Host Galaxy Mismatch of Type Ia Supernovae
AU - DES Collaboration
AU - Qu, H.
AU - Sako, M.
AU - Vincenzi, M.
AU - Sánchez, C.
AU - Brout, D.
AU - Kessler, R.
AU - Chen, R.
AU - Davis, T.
AU - Galbany, L.
AU - Kelsey, L.
AU - Lee, J.
AU - Lidman, C.
AU - Popovic, B.
AU - Rose, B.
AU - Scolnic, D.
AU - Smith, M.
AU - Sullivan, M.
AU - Wiseman, P.
AU - Abbott, T. M.C.
AU - Aguena, M.
AU - Alves, O.
AU - Bacon, D.
AU - Bertin, E.
AU - Burke, D. L.
AU - Brooks, D.
AU - Carnero Rosell, A.
AU - Carretero, J.
AU - da Costa, L. N.
AU - Pereira, M. E.S.
AU - Diehl, H. T.
AU - Doel, P.
AU - Everett, S.
AU - Ferrero, I.
AU - Frieman, J.
AU - García-Bellido, J.
AU - Giannini, G.
AU - Gruen, D.
AU - Gruendl, R. A.
AU - Gutierrez, G.
AU - Hinton, S. R.
AU - Hollowood, D. L.
AU - Honscheid, K.
AU - Kuehn, K.
AU - James, D. J.
AU - Lahav, O.
AU - Marshall, J. L.
AU - Mena-Fernández, J.
AU - Menanteau, F.
AU - Miquel, R.
AU - Ogando, R. L.C.
N1 - H.Q., J.L., and M.S. were supported by DOE grant DEFOA-0002424 and NSF grant AST-2108094. L.G. acknowledges financial support from the Spanish Ministerio de Ciencia e Innovaci\u00F3n (MCIN), the Agencia Estatal de Investigaci\u00F3n (AEI) 10.13039/501100011033, and the European Social Fund (ESF) \u201CInvesting in your future\u201D under the 2019 Ram\u00F3n y Cajal program RYC2019-027683-I and the PID2020-115253GA-I00 HOSTFLOWS project, from Centro Superior de Investigaciones Cient\u00EDficas (CSIC) under the PIE project 20215AT016, and the program Unidad de Excelencia Mar\u00EDa de Maeztu CEX2020-001058-M. P.W. acknowledges support from the Science and Technology Facilities Council (STFC) grant ST/ R000506/1. L.K. thanks the UKRI Future Leaders Fellowship for support through the grant MR/T01881X/1. This work was completed in part with resources provided by the University of Chicago's Research Computing Center, as well as resources of the National Energy Research Scientific Computing Center (NERSC), a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Funda\u00E7\u00E3o Carlos Chagas Filho de Amparo \u00E0 Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Cient\u00EDfico e Tecnol\u00F3gico and the Minist\u00E9rio da Ci\u00EAncia, Tecnologia e Inova\u00E7\u00E3o, the Deutsche Forschungsgemeinschaft and the Collaborating Institutions in the Dark Energy Survey. The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energ\u00E9ticas, Medioambientales y Tecnol\u00F3gicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the University of Edinburgh, the Eidgen\u00F6ssische Technische Hochschule (ETH) Z\u00FCrich, Fermi National Accelerator Laboratory, the University of Illinois at Urbana-Champaign, the Institut de Ci\u00E8ncies de l\u2019Espai (IEEC/CSIC), the Institut de F\u00EDsica d\u2019Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universit\u00E4t M\u00FCnchen and the associated Excellence Cluster Universe, the University of Michigan, NSF\u2019s NOIRLab, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, Texas A&M University, and the OzDES Membership Consortium. Based in part on observations at Cerro Tololo Inter-American Observatory at NSF\u2019s NOIRLab (NOIRLab Prop. ID 2012B-0001; PI: J. Frieman), which is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation. The DES data management system is supported by the National Science Foundation under grant Nos. AST-1138766 and AST-1536171. The DES participants from Spanish institutions are partially supported by MICINN under grants ESP2017-89838, PGC2018-094773, PGC2018-102021, SEV-2016-0588, SEV-2016-0597, and MDM-2015-0509, some of which include ERDF funds from the European Union. IFAE is partially funded by the CERCA program of the Generalitat de Catalunya. Research leading to these results has received funding from the European Research Council under the European Union\u2019s Seventh Framework Program (FP7/2007-2013) including ERC grant agreements 240672, 291329, and 306478. We acknowledge support from the Brazilian Instituto Nacional de Ci\u00EAncia e Tecnologia (INCT) do e-Universo (CNPq grant 465376/2014-2). This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics. H.Q., J.L., and M.S. were supported by DOE grant DE-FOA-0002424 and NSF grant AST-2108094. L.G. acknowledges financial support from the Spanish Ministerio de Ciencia e Innovaci\u00F3n (MCIN), the Agencia Estatal de Investigaci\u00F3n (AEI) 10.13039/501100011033, and the European Social Fund (ESF) \u201CInvesting in your future\u201D under the 2019 Ram\u00F3n y Cajal program RYC2019-027683-I and the PID2020-115253GA-I00 HOSTFLOWS project, from Centro Superior de Investigaciones Cient\u00EDficas (CSIC) under the PIE project 20215AT016, and the program Unidad de Excelencia Mar\u00EDa de Maeztu CEX2020-001058-M. P.W. acknowledges support from the Science and Technology Facilities Council (STFC) grant ST/R000506/1. L.K. thanks the UKRI Future Leaders Fellowship for support through the grant MR/T01881X/1. Based in part on observations at Cerro Tololo Inter-American Observatory at NSF\u2019s NOIRLab (NOIRLab Prop. ID 2012B-0001; PI: J. Frieman), which is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation. The DES data management system is supported by the National Science Foundation under grant Nos. AST-1138766 and AST-1536171. The DES participants from Spanish institutions are partially supported by MICINN under grants ESP2017-89838, PGC2018-094773, PGC2018-102021, SEV-2016-0588, SEV-2016-0597, and MDM-2015-0509, some of which include ERDF funds from the European Union. IFAE is partially funded by the CERCA program of the Generalitat de Catalunya. Research leading to these results has received funding from the European Research Council under the European Union\u2019s Seventh Framework Program (FP7/2007-2013) including ERC grant agreements 240672, 291329, and 306478. We acknowledge support from the Brazilian Instituto Nacional de Ci\u00EAncia e Tecnologia (INCT) do e-Universo (CNPq grant 465376/2014-2). This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics. This work was completed in part with resources provided by the University of Chicago's Research Computing Center, as well as resources of the National Energy Research Scientific Computing Center (NERSC), a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
PY - 2024/4/1
Y1 - 2024/4/1
N2 - Redshift measurements, primarily obtained from host galaxies, are essential for inferring cosmological parameters from type Ia supernovae (SNe Ia). Matching SNe to host galaxies using images is nontrivial, resulting in a subset of SNe with mismatched hosts and thus incorrect redshifts. We evaluate the host galaxy mismatch rate and resulting biases on cosmological parameters from simulations modeled after the Dark Energy Survey 5 Yr (DES-SN5YR) photometric sample. For both DES-SN5YR data and simulations, we employ the directional light radius method for host galaxy matching. In our SN Ia simulations, we find that 1.7% of SNe are matched to the wrong host galaxy, with redshift differences between the true and matched hosts of up to 0.6. Using our analysis pipeline, we determine the shift in the dark energy equation of state parameter (Δw) due to including SNe with incorrect host galaxy matches. For SN Ia–only simulations, we find Δw = 0.0013 ± 0.0026 with constraints from the cosmic microwave background. Including core-collapse SNe and peculiar SNe Ia in the simulation, we find that Δw ranges from 0.0009 to 0.0032, depending on the photometric classifier used. This bias is an order of magnitude smaller than the expected total uncertainty on w from the DES-SN5YR sample of ∼0.03. We conclude that the bias on w from host galaxy mismatch is much smaller than the uncertainties expected from the DES-SN5YR sample, but we encourage further studies to reduce this bias through better host-matching algorithms or selection cuts.
AB - Redshift measurements, primarily obtained from host galaxies, are essential for inferring cosmological parameters from type Ia supernovae (SNe Ia). Matching SNe to host galaxies using images is nontrivial, resulting in a subset of SNe with mismatched hosts and thus incorrect redshifts. We evaluate the host galaxy mismatch rate and resulting biases on cosmological parameters from simulations modeled after the Dark Energy Survey 5 Yr (DES-SN5YR) photometric sample. For both DES-SN5YR data and simulations, we employ the directional light radius method for host galaxy matching. In our SN Ia simulations, we find that 1.7% of SNe are matched to the wrong host galaxy, with redshift differences between the true and matched hosts of up to 0.6. Using our analysis pipeline, we determine the shift in the dark energy equation of state parameter (Δw) due to including SNe with incorrect host galaxy matches. For SN Ia–only simulations, we find Δw = 0.0013 ± 0.0026 with constraints from the cosmic microwave background. Including core-collapse SNe and peculiar SNe Ia in the simulation, we find that Δw ranges from 0.0009 to 0.0032, depending on the photometric classifier used. This bias is an order of magnitude smaller than the expected total uncertainty on w from the DES-SN5YR sample of ∼0.03. We conclude that the bias on w from host galaxy mismatch is much smaller than the uncertainties expected from the DES-SN5YR sample, but we encourage further studies to reduce this bias through better host-matching algorithms or selection cuts.
UR - http://www.scopus.com/inward/record.url?scp=85189458486&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85189458486&partnerID=8YFLogxK
U2 - 10.3847/1538-4357/ad251d
DO - 10.3847/1538-4357/ad251d
M3 - Article
AN - SCOPUS:85189458486
SN - 0004-637X
VL - 964
JO - Astrophysical Journal
JF - Astrophysical Journal
IS - 2
M1 - 134
ER -