TY - JOUR
T1 - The chromosome cycle of prokaryotes
AU - Kuzminov, Andrei
PY - 2013/10
Y1 - 2013/10
N2 - Summary: In both eukaryotes and prokaryotes, chromosomal DNA undergoes replication, condensation-decondensation and segregation, sequentially, in some fixed order. Other conditions, like sister-chromatid cohesion (SCC), may span several chromosomal events. One set of these chromosomal transactions within a single cell cycle constitutes the 'chromosome cycle'. For many years it was generally assumed that the prokaryotic chromosome cycle follows major phases of the eukaryotic one: -replication-condensation-segregation-(cell division)-decondensation-, with SCC of unspecified length. Eventually it became evident that, in contrast to the strictly consecutive chromosome cycle of eukaryotes, all stages of the prokaryotic chromosome cycle run concurrently. Thus, prokaryotes practice 'progressive' chromosome segregation separated from replication by a brief SCC, and all three transactions move along the chromosome at the same fast rate. In other words, in addition to replication forks, there are 'segregation forks' in prokaryotic chromosomes. Moreover, the bulk of prokaryotic DNA outside the replication-segregation transition stays compacted. I consider possible origins of this concurrent replication-segregation and outline the 'nucleoid administration' system that organizes the dynamic part of the prokaryotic chromosome cycle.
AB - Summary: In both eukaryotes and prokaryotes, chromosomal DNA undergoes replication, condensation-decondensation and segregation, sequentially, in some fixed order. Other conditions, like sister-chromatid cohesion (SCC), may span several chromosomal events. One set of these chromosomal transactions within a single cell cycle constitutes the 'chromosome cycle'. For many years it was generally assumed that the prokaryotic chromosome cycle follows major phases of the eukaryotic one: -replication-condensation-segregation-(cell division)-decondensation-, with SCC of unspecified length. Eventually it became evident that, in contrast to the strictly consecutive chromosome cycle of eukaryotes, all stages of the prokaryotic chromosome cycle run concurrently. Thus, prokaryotes practice 'progressive' chromosome segregation separated from replication by a brief SCC, and all three transactions move along the chromosome at the same fast rate. In other words, in addition to replication forks, there are 'segregation forks' in prokaryotic chromosomes. Moreover, the bulk of prokaryotic DNA outside the replication-segregation transition stays compacted. I consider possible origins of this concurrent replication-segregation and outline the 'nucleoid administration' system that organizes the dynamic part of the prokaryotic chromosome cycle.
UR - http://www.scopus.com/inward/record.url?scp=84885371027&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84885371027&partnerID=8YFLogxK
U2 - 10.1111/mmi.12372
DO - 10.1111/mmi.12372
M3 - Review article
C2 - 23962352
AN - SCOPUS:84885371027
SN - 0950-382X
VL - 90
SP - 214
EP - 227
JO - Molecular Microbiology
JF - Molecular Microbiology
IS - 2
ER -