The Casimir force for arbitrary three-dimensional objects with low frequency methods

P. R. Atkins, W. C. Chew, Q. I. Dai, W. E.I. Sha

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

There has been much progress in recent years in the simulation of Casimir forces between various objects. Current methods have allowed traditional computational electromagnetic solvers to be used to find the Casimir forces in arbitrary three-dimensional objects. The underlying theory to these approaches requires knowledge and manipulation of advanced quantum field theory or quantum statistical physics. We present a means of deriving the Casimir force using the method of moments via the argument principle that presents a simplified derivation and greater freedom in the representation of the moment matrix.

Original languageEnglish (US)
Title of host publication2012 IEEE International Symposiumon Antennas and Propagation, APSURSI 2012 - Proceedings
DOIs
StatePublished - 2012
EventJoint 2012 IEEE International Symposium on Antennas and Propagation and USNC-URSI National Radio Science Meeting, APSURSI 2012 - Chicago, IL, United States
Duration: Jul 8 2012Jul 14 2012

Publication series

NameIEEE Antennas and Propagation Society, AP-S International Symposium (Digest)
ISSN (Print)1522-3965

Other

OtherJoint 2012 IEEE International Symposium on Antennas and Propagation and USNC-URSI National Radio Science Meeting, APSURSI 2012
Country/TerritoryUnited States
CityChicago, IL
Period7/8/127/14/12

ASJC Scopus subject areas

  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'The Casimir force for arbitrary three-dimensional objects with low frequency methods'. Together they form a unique fingerprint.

Cite this