The Carbon Stock and Sequestration Rate in Tidal Flats From Coastal China

Jie Chen, Dongqi Wang, Yangjie Li, Zhongjie Yu, Shu Chen, Xiyong Hou, John R. White, Zhenlou Chen

Research output: Contribution to journalArticlepeer-review

Abstract

Tidal flats form around the estuarine and coastal zone by continuous terrigenous sediment transport and deposition processes. Now a large body of published carbon research work frame within the vegetated area (mangrove forests, sea grass bed, and salt marshes). Nonvegetated tidal flats, which are characterized by predominantly silts and clays sediment, were generally impressed with low carbon stock due to their meager primary productivity. However, these regions may be a potentially important carbon sink, given their high burial rate, expanding areal coverage, and detrial organic carbon derived from watershed and adjacent vegetated area. Low carbon densities (<0.01 g cm−3) were found in Chinese tidal flat sediments by the study, but the carbon sequestration rates ranged from 35 to 361 g C m−2 yr−1, which were comparable to rates of worldwide vegetated coastal areas. The high rates can be ascribed to rapid sedimentation rates (1–2 cm yr−1) during the past several decades. The highest areal carbon stocks were located at tidal flat sites proximal to mangrove forests. The majority of carbon stocks (100 cm) was found in the unvegetated tidal flats instead of in the vegetated tidal flats. The former occupied 87% of the entire tidal area, 6.7 times larger than the latter. Tidal flats in coastal China store 78.07 Tg C (100 cm), accounting for nearly 80% of the C deposited in entire coastal tidal area. The future carbon sequestration rates of Chinese tidal flats are facing uncertainties under the pressures of reduced fluvial sediment loads from major rivers.

Original languageEnglish (US)
Article numbere2020GB006772
JournalGlobal Biogeochemical Cycles
Volume34
Issue number11
DOIs
StatePublished - Nov 2020

ASJC Scopus subject areas

  • Global and Planetary Change
  • Environmental Chemistry
  • General Environmental Science
  • Atmospheric Science

Fingerprint

Dive into the research topics of 'The Carbon Stock and Sequestration Rate in Tidal Flats From Coastal China'. Together they form a unique fingerprint.

Cite this