The biotinyl domain of Escherichia coli acetyl-CoA carboxylase: Evidence that the "thumb" structure is essential and that the domain functions as a dimer

Research output: Contribution to journalArticlepeer-review

Abstract

Biotin carboxyl carrier protein (BCCP) is the small biotinylated subunit of Escherichia coli acetyl-CoA carboxylase (ACC), the enzyme that catalyzes the first committed step of fatty acid synthesis. Similar proteins are found in other bacteria and in chloroplasts. E. coli BCCP is a member of a large family of protein domains modified by covalent attachment of biotin to a specific lysine residue. However, the BCCP biotinyl domain differs from many of these proteins in that an eight-amino acid residue insertion is present upstream of the biotinylated lysine. X-ray crystallographic and multidimensional NMR studies show that these residues constitute a structure that has the appearance of an extended thumb that protrudes from the otherwise highly symmetrical domain structure. I report that expression of two mutant BCCPs lacking the thumb residues fails to restore growth and fatty acid synthesis to a temperature-sensitive E. coli strain that lacks BCCP when grown at nonpermissive temperature. Alignment of BC-CPs from various organisms shows that only two of the eight thumb residues are strictly conserved, and amino acid substitution of either residue results in proteins giving only weak growth of the temperature-sensitive E. coli strain. Therefore, the thumb structure is essential for the function of BCCP in the ACC reaction and provides a useful motif for distinguishing the biotinylated proteins of multisubunit ACCs from those of enzymes catalyzing other biotin-dependent reactions. An unexpected result was that expression of a mutant BCCP in which the biotinylated lysine residue was substituted with cysteine was able to partially restore growth and fatty acid synthesis to the temperature-sensitive E. coli strain. This complementation was shown to be specific to BCCPs having native structure (excepting the biotinylated lysine) and is interpreted in terms of dimerization of the BCCP biotinyl domain during the ACC reaction.

Original languageEnglish (US)
Pages (from-to)37355-37364
Number of pages10
JournalJournal of Biological Chemistry
Volume276
Issue number40
DOIs
StatePublished - Oct 5 2001

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Fingerprint Dive into the research topics of 'The biotinyl domain of Escherichia coli acetyl-CoA carboxylase: Evidence that the "thumb" structure is essential and that the domain functions as a dimer'. Together they form a unique fingerprint.

Cite this