The asteroid surveying problem and other puzzles

Timothy M. Chan, Alexander Golynski, Alejandro López-Ortiz, Claude Guy Quimper

Research output: Contribution to conferencePaperpeer-review

Abstract

We consider two variants of the well-known "sailor in the fog" puzzle. The first version (the "asteroid surveying" problem) is set in three dimensions and asks for the shortest curve that starts at the origin and intersects all planes at unit distance from the origin. Several possible solutions are suggested in the video, including a curve of length less than 12.08. The second version (the "river shore" problem) asks for the shortest curve in the plane that has unit width. A solution of length 2.2782... is described, which we have proved to be optimal.

Original languageEnglish (US)
Pages372-373
Number of pages2
DOIs
StatePublished - 2003
Externally publishedYes
EventNineteenth Annual Symposium on Computational Geometry - san Diego, CA, United States
Duration: Jun 8 2003Jun 10 2003

Other

OtherNineteenth Annual Symposium on Computational Geometry
Country/TerritoryUnited States
Citysan Diego, CA
Period6/8/036/10/03

Keywords

  • Curves
  • Geometric constants

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Geometry and Topology
  • Computational Mathematics

Fingerprint

Dive into the research topics of 'The asteroid surveying problem and other puzzles'. Together they form a unique fingerprint.

Cite this