Text classification models for assessing the completeness of randomized controlled trial publications based on CONSORT reporting guidelines

Lan Jiang, Mengfei Lan, Joe D. Menke, Colby J. Vorland, Halil Kilicoglu

Research output: Contribution to journalArticlepeer-review

Abstract

Complete and transparent reporting of randomized controlled trial publications (RCTs) is essential for assessing their credibility. We aimed to develop text classification models for determining whether RCT publications report CONSORT checklist items. Using a corpus annotated with 37 fine-grained CONSORT items, we trained sentence classification models (PubMedBERT fine-tuning, BioGPT fine-tuning, and in-context learning with GPT-4) and compared their performance. We assessed the impact of data augmentation methods (Easy Data Augmentation (EDA), UMLS-EDA, text generation and rephrasing with GPT-4) on model performance. We also fine-tuned section-specific PubMedBERT models (e.g., Methods) to evaluate whether they could improve performance compared to the single full model. We performed 5-fold cross-validation and report precision, recall, F1 score, and area under curve (AUC). Fine-tuned PubMedBERT model that uses the sentence along with the surrounding sentences and section headers yielded the best overall performance (sentence level: 0.71 micro-F1, 0.67 macro-F1; article-level: 0.90 micro-F1, 0.84 macro-F1). Data augmentation had limited positive effect. BioGPT fine-tuning and GPT-4 in-context learning exhibited suboptimal results. Methods-specific model improved recognition of methodology items, other section-specific models did not have significant impact. Most CONSORT checklist items can be recognized reasonably well with the fine-tuned PubMedBERT model but there is room for improvement. Improved models can underpin the journal editorial workflows and CONSORT adherence checks.

Original languageEnglish (US)
Article number21721
JournalScientific reports
Volume14
Issue number1
DOIs
StatePublished - Dec 2024

Keywords

  • CONSORT
  • Reporting guidelines
  • Reporting transparency
  • Sentence classification
  • Text mining

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Text classification models for assessing the completeness of randomized controlled trial publications based on CONSORT reporting guidelines'. Together they form a unique fingerprint.

Cite this