Testing for homogeneity in mixture models

Jiaying Gu, Roger Koenker, Stanislav Volgushev

Research output: Contribution to journalArticlepeer-review

Abstract

Statistical models of unobserved heterogeneity are typically formalized as mixtures of simple parametric models and interest naturally focuses on testing for homogeneity versus general mixture alternatives. Many tests of this type can be interpreted as C(α) tests, as in Neyman (1959), and shown to be locally asymptotically optimal. These C(α) tests will be contrasted with a new approach to likelihood ratio testing for general mixture models. The latter tests are based on estimation of general nonparametric mixing distribution with the Kiefer and Wolfowitz (1956) maximum likelihood estimator. Recent developments in convex optimization have dramatically improved upon earlier EM methods for computation of these estimators, and recent results on the large sample behavior of likelihood ratios involving such estimators yield a tractable form of asymptotic inference. Improvement in computation efficiency also facilitates the use of a bootstrap method to determine critical values that are shown to work better than the asymptotic critical values in finite samples. Consistency of the bootstrap procedure is also formally established. We compare performance of the two approaches identifying circumstances in which each is preferred.

Original languageEnglish (US)
Pages (from-to)850-895
Number of pages46
JournalEconometric Theory
Volume34
Issue number4
DOIs
StatePublished - Aug 1 2018
Externally publishedYes

ASJC Scopus subject areas

  • Social Sciences (miscellaneous)
  • Economics and Econometrics

Fingerprint

Dive into the research topics of 'Testing for homogeneity in mixture models'. Together they form a unique fingerprint.

Cite this