TY - JOUR
T1 - Temporal Dynamics of Purinergic Receptor Expression in the Lungs of Marek’s Disease (MD) Virus-Infected Chickens Resistant or Susceptible to MD
AU - Akbar, Haji
AU - Jarosinski, Keith W.
N1 - This work was partially funded by Agriculture and Food Research Initiative (AFRI) Competitive Grant no. 2019-67015-29262 as part of the joint USDA-NIFA-NIH Dual Purpose with Dual Benefit: Research in Biomedicine and Agriculture Using Agriculturally Important Domestic Animal Species Program, AFRI Competitive Grant no. 2020-67015-21399 from the USDA-NIFA, and USDA-NIFA Hatch project ILLU-888-96 to K.W.J. and H.A.
PY - 2024/7
Y1 - 2024/7
N2 - Marek’s disease virus (MDV) is an economic concern for the poultry industry due to its poorly understood pathophysiology. Purinergic receptors (PRs) are potential therapeutic targets for viral infections, including herpesviruses, prompting our investigation into their role in MDV pathogenesis. The current study is part of an experimental series analyzing the expression of PRs during MDV infection. To address the early or short-acting P2 PR responses during natural MDV infection, we performed an “exposure” experiment where age-matched chickens were exposed to experimentally infected shedders to initiate natural infection. In addition, select non-PR regulatory gene responses were measured. Two groups of naïve contact chickens (n = 5/breed/time point) from MD-resistant (White Leghorns: WL) and -susceptible (Pure Columbian) chicken lines were housed separately with experimentally infected PC (×PC) and WL (×WL) chickens for 6 or 24 h. Whole lung lavage cells (WLLC) were collected, RNA was extracted, and RT-qPCR assays were used to measure specific PR responses. In addition, other potentially important markers in pathophysiology were measured. Our study revealed that WL chickens exhibited higher P1 PR expression during natural infection. WL chickens also showed higher expression of P1A3 and P2X3 at 6 and 24 h when exposed to PC-infected chickens. P2X5 and P2Y1 showed higher expression at 6 h, while P2Y5 showed higher expression at 6 and 24 h; regardless of the chicken line, PC chickens exhibited higher expression of P2X2, P2Y8, P2Y10, P2Y13, and P2Y14 when exposed to either group of infected chickens. In addition, MDV infection altered the expression of DDX5 in both WL and PC groups exposed to PC-infected birds only. However, irrespective of the source of exposure, BCL2 and ANGPTL4 showed higher expression in both WL and PC. The expression of STAT1A and STAT5A was influenced by time and breed, with major changes observed in STAT5A. CAT and SOD1 expression significantly increased in both WL and PC birds, regardless of the source of infection. GPX1 and GPX2 expression also increased in both WL and PC, although overall lower expression was observed in PC chickens at 24 h compared to 6 h. Our data suggest systemic changes in the host during early infection, indicated by the altered expression of PRs, DDX5, BCL2, ANGPTL4, and other regulatory genes during early MDV infection. The relative expression of these responses in PC and WL chickens suggests they may play a key role in their response to natural MDV infection in the lungs and long-term pathogenesis and survival.
AB - Marek’s disease virus (MDV) is an economic concern for the poultry industry due to its poorly understood pathophysiology. Purinergic receptors (PRs) are potential therapeutic targets for viral infections, including herpesviruses, prompting our investigation into their role in MDV pathogenesis. The current study is part of an experimental series analyzing the expression of PRs during MDV infection. To address the early or short-acting P2 PR responses during natural MDV infection, we performed an “exposure” experiment where age-matched chickens were exposed to experimentally infected shedders to initiate natural infection. In addition, select non-PR regulatory gene responses were measured. Two groups of naïve contact chickens (n = 5/breed/time point) from MD-resistant (White Leghorns: WL) and -susceptible (Pure Columbian) chicken lines were housed separately with experimentally infected PC (×PC) and WL (×WL) chickens for 6 or 24 h. Whole lung lavage cells (WLLC) were collected, RNA was extracted, and RT-qPCR assays were used to measure specific PR responses. In addition, other potentially important markers in pathophysiology were measured. Our study revealed that WL chickens exhibited higher P1 PR expression during natural infection. WL chickens also showed higher expression of P1A3 and P2X3 at 6 and 24 h when exposed to PC-infected chickens. P2X5 and P2Y1 showed higher expression at 6 h, while P2Y5 showed higher expression at 6 and 24 h; regardless of the chicken line, PC chickens exhibited higher expression of P2X2, P2Y8, P2Y10, P2Y13, and P2Y14 when exposed to either group of infected chickens. In addition, MDV infection altered the expression of DDX5 in both WL and PC groups exposed to PC-infected birds only. However, irrespective of the source of exposure, BCL2 and ANGPTL4 showed higher expression in both WL and PC. The expression of STAT1A and STAT5A was influenced by time and breed, with major changes observed in STAT5A. CAT and SOD1 expression significantly increased in both WL and PC birds, regardless of the source of infection. GPX1 and GPX2 expression also increased in both WL and PC, although overall lower expression was observed in PC chickens at 24 h compared to 6 h. Our data suggest systemic changes in the host during early infection, indicated by the altered expression of PRs, DDX5, BCL2, ANGPTL4, and other regulatory genes during early MDV infection. The relative expression of these responses in PC and WL chickens suggests they may play a key role in their response to natural MDV infection in the lungs and long-term pathogenesis and survival.
KW - Marek’s disease virus (MDV)
KW - natural infection
KW - lung
KW - signaling
KW - purinergic receptors
UR - http://www.scopus.com/inward/record.url?scp=85199623386&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85199623386&partnerID=8YFLogxK
U2 - 10.3390/v16071130
DO - 10.3390/v16071130
M3 - Article
C2 - 39066292
SN - 1999-4915
VL - 16
JO - Viruses
JF - Viruses
IS - 7
M1 - 1130
ER -