Temporal codes in on-chip interconnects

Michael Mishkin, Nam Sung Kim, Mikko Lipasti

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Dynamic power consumption associated with signal toggles over long distance wires accounts for a significant portion of on-chip interconnect power. Improving dynamic energy efficiency in highly capacitive interconnects can be achieved by reducing the toggle rates associated with data communication. Temporal coding schemes facilitate bounded activity factors by encoding information as placement of signal toggles in time and can thereby improve the energy efficiency of data communication by encoding multiple bits per toggle. We introduce two temporal protocol variants designed for traversal of the crossbars in on-chip networks. These protocols reduce peak power without loss of bandwidth and achieve energy efficient on-chip communication in high capacitance long distance interconnects. Extending these energy savings to a multi-hop mesh topology is achieved by router implementations equipped with bypassing mechanisms that elide per hop reencoding overheads. We demonstrate a four bit per transition temporal protocol with up to 75% communication energy reduction that can be achieved over a baseline serial bit stream protocol.

Original languageEnglish (US)
Title of host publicationISLPED 2017 - IEEE/ACM International Symposium on Low Power Electronics and Design
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781509060238
DOIs
StatePublished - Aug 11 2017
Event22nd IEEE/ACM International Symposium on Low Power Electronics and Design, ISLPED 2017 - Taipei, Taiwan, Province of China
Duration: Jul 24 2017Jul 26 2017

Publication series

NameProceedings of the International Symposium on Low Power Electronics and Design
ISSN (Print)1533-4678

Other

Other22nd IEEE/ACM International Symposium on Low Power Electronics and Design, ISLPED 2017
Country/TerritoryTaiwan, Province of China
CityTaipei
Period7/24/177/26/17

ASJC Scopus subject areas

  • General Engineering

Fingerprint

Dive into the research topics of 'Temporal codes in on-chip interconnects'. Together they form a unique fingerprint.

Cite this