Temperature / rarefaction effects in hypersonic boundary-layer flow with an oblique roughness element

Gordon Groskopf, Markus J. Kloker, Kelly A. Stephani

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Three-dimensional laminar hypersonic boundary-layer flows are investigated applying the compressible bi-global linear stability theory (B-LST) in flow crossplanes. The flat-plate flow is altered by an obliquely placed discrete fence-like roughness element that is about half the boundary-layer thickness high. Roughness setup and flow conditions resemble the STS-119 flight experiment. A cold-flow case and hot-flow cases are considered. The influence of non-perfect gas properties such as variable chemical composition, or thermal energy relaxation are included. The steady base flows are extracted from Navier-Stokes simulations. The underlying gas modell for reacting and non-reacting air accounts for thermal as well as chemical nonequilibrium. Rarefaction effects are considered in terms of a slip condition for velocity and temperature at the wall. Stability properties of the roughness wake under cold, hot, and hot rarefied flow conditions are compared in terms of local and integral growth.

Original languageEnglish (US)
Title of host publication41st AIAA Fluid Dynamics Conference and Exhibit
PublisherAmerican Institute of Aeronautics and Astronautics Inc.
ISBN (Print)9781600869471
DOIs
StatePublished - 2011
Externally publishedYes
Event41st AIAA Fluid Dynamics Conference and Exhibit 2011 - Honolulu, HI, United States
Duration: Jun 27 2011Jun 30 2011

Publication series

Name41st AIAA Fluid Dynamics Conference and Exhibit

Conference

Conference41st AIAA Fluid Dynamics Conference and Exhibit 2011
CountryUnited States
CityHonolulu, HI
Period6/27/116/30/11

ASJC Scopus subject areas

  • Fluid Flow and Transfer Processes
  • Mechanical Engineering
  • Energy Engineering and Power Technology
  • Aerospace Engineering

Fingerprint Dive into the research topics of 'Temperature / rarefaction effects in hypersonic boundary-layer flow with an oblique roughness element'. Together they form a unique fingerprint.

Cite this