Abstract
We investigate near-equilibrium ballistic transport through a quantum point contact (QPC) along a GaAs/AlGaAs heterojunction with a transfer matrix technique as a function of temperature and the shape of the potential barrier in the QPC. Our analysis is based on a three-dimensional (3D) quantum-mechanical variational model within the Hartree-Fock approximation that takes into account the vertical depletion potential from ionized acceptors in GaAs and the gate-induced transverse confinement potential that reduce to an effective slowly varying one-dimensional (1D) potential along the narrow constriction. The calculated zero-temperature transmission exhibits a shoulder ranging from 0.3 to 0.6 depending on the length of the QPC and the profile of the barrier potential. The effect is a consequence of the compressibility peak in the 1D electron gas and is enhanced for antiferromagnetic interaction among electrons in the QPC, but is smeared out once temperature is increased by a few tenths of a Kelvin.
Original language | English (US) |
---|---|
Article number | 075305 |
Journal | Physical Review B - Condensed Matter and Materials Physics |
Volume | 88 |
Issue number | 7 |
DOIs | |
State | Published - Aug 7 2013 |
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics