Temperature imaging of vortex-flame interaction by filtered Rayleigh scattering

Sean P. Kearney, Robert W. Schefer, Steven J. Beresh, Thomas W. Grasser

Research output: Contribution to journalConference articlepeer-review

Abstract

This paper describes the application of a filtered-Rayleigh-scattering (FRS) instrument for nonintrusive temperature imaging in a vortex-driven diffusion flame. The FRS technique provides quantitative, spatially correlated temperature data without the flow intrusion or time lag associated with physical probes. Use of a molecular iodine filter relaxes the requirement for clean, particulate-free flowfields and offers the potential for imaging near walls, test section windows and in sooty flames, all of which are precluded in conventional Rayleigh imaging, where background interference from these sources typically overwhelms the weak molecular scattering signal. For combustion applications, FRS allows for full-field temperature imaging without chemical seeding of the flowfield, which makes FRS an attractive alternative to other laser-based imaging methods such as planar laser-induced fluorescence (PLIF). In this work, the details of our FRS imaging system are presented and temperature measurements from an acoustically forced diffusion flame are provided. The local Rayleigh cross-section is corrected using Raman imaging measurements of the methane fuel molecule, which are then correlated to other major species using a laminar flamelet approach. To our knowledge, this is the first report of joint Raman/FRS imaging for nonpremixed combustion. Measurements are presented from flames driven at 7.5 Hz, where a single vortex stretches the flame, and at 90 Hz, where two consecutive vortices interact to cause a repeatable strain-induced flame-quenching event.

Original languageEnglish (US)
Pages (from-to)437-447
Number of pages11
JournalAmerican Society of Mechanical Engineers, Heat Transfer Division, (Publication) HTD
Volume374
Issue number1
DOIs
StatePublished - 2003
Externally publishedYes
Event2003 ASME International Mechanical Engineering Congress - Washington, DC., United States
Duration: Nov 15 2003Nov 21 2003

ASJC Scopus subject areas

  • Mechanical Engineering
  • Fluid Flow and Transfer Processes

Fingerprint

Dive into the research topics of 'Temperature imaging of vortex-flame interaction by filtered Rayleigh scattering'. Together they form a unique fingerprint.

Cite this