Temperature-Centric Investigation of Speculative Decoding with Knowledge Distillation

Siru Ouyang, Shuohang Wang, Minhao Jiang, Ming Zhong, Donghan Yu, Jiawei Han, Yelong Shen

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Speculative decoding stands as a pivotal technique to expedite inference in autoregressive (large) language models. This method employs a smaller draft model to speculate a block of tokens, which the target model then evaluates for acceptance. Despite a wealth of studies aimed at increasing the efficiency of speculative decoding, the influence of generation configurations on the decoding process remains poorly understood, especially concerning decoding temperatures. This paper delves into the effects of decoding temperatures on speculative decoding's efficacy. Beginning with knowledge distillation (KD), we first highlight the challenge of decoding at higher temperatures, and demonstrate KD in a consistent temperature setting could be a remedy. We also investigate the effects of out-of-domain testing sets with out-of-range temperatures. Building upon these findings, we take an initial step to further the speedup for speculative decoding, particularly in a high-temperature generation setting. Our work offers new insights into how generation configurations drastically affect the performance of speculative decoding, and underscores the need for developing methods that focus on diverse decoding configurations. Code is publically available at https://github.com/ozyyshr/TempSpec.

Original languageEnglish (US)
Title of host publicationEMNLP 2024 - 2024 Conference on Empirical Methods in Natural Language Processing, Findings of EMNLP 2024
EditorsYaser Al-Onaizan, Mohit Bansal, Yun-Nung Chen
PublisherAssociation for Computational Linguistics (ACL)
Pages13125-13137
Number of pages13
ISBN (Electronic)9798891761681
DOIs
StatePublished - 2024
Event2024 Findings of the Association for Computational Linguistics, EMNLP 2024 - Hybrid, Miami, United States
Duration: Nov 12 2024Nov 16 2024

Publication series

NameEMNLP 2024 - 2024 Conference on Empirical Methods in Natural Language Processing, Findings of EMNLP 2024

Conference

Conference2024 Findings of the Association for Computational Linguistics, EMNLP 2024
Country/TerritoryUnited States
CityHybrid, Miami
Period11/12/2411/16/24

ASJC Scopus subject areas

  • Computational Theory and Mathematics
  • Computer Science Applications
  • Information Systems
  • Linguistics and Language

Fingerprint

Dive into the research topics of 'Temperature-Centric Investigation of Speculative Decoding with Knowledge Distillation'. Together they form a unique fingerprint.

Cite this