TY - GEN
T1 - Task-guided pair embedding in heterogeneous network
AU - Park, Chanyoung
AU - Kim, Donghyun
AU - Zhu, Qi
AU - Han, Jiawei
AU - Yu, Hwanjo
N1 - Publisher Copyright:
© 2019 Association for Computing Machinery.
PY - 2019/11/3
Y1 - 2019/11/3
N2 - Many real-world tasks solved by heterogeneous network embedding methods can be cast as modeling the likelihood of a pairwise relationship between two nodes. For example, the goal of author identification task is to model the likelihood of a paper being written by an author (paper-author pairwise relationship). Existing task-guided embedding methods are node-centric in that they simply measure the similarity between the node embeddings to compute the likelihood of a pairwise relationship between two nodes. However, we claim that for task-guided embeddings, it is crucial to focus on directly modeling the pairwise relationship. In this paper, we propose a novel task-guided pair embedding framework in heterogeneous network, called TaPEm, that directly models the relationship between a pair of nodes that are related to a specific task (e.g., paper-author relationship in author identification). To this end, we 1) propose to learn a pair embedding under the guidance of its associated context path, i.e., a sequence of nodes between the pair, and 2) devise the pair validity classifier to distinguish whether the pair is valid with respect to the specific task at hand. By introducing pair embeddings that capture the semantics behind the pairwise relationships, we are able to learn the fine-grained pairwise relationship between two nodes, which is paramount for task-guided embedding methods. Extensive experiments on author identification task demonstrate that TaPEm outperforms the state-of-the-art methods, especially for authors with few publication records.
AB - Many real-world tasks solved by heterogeneous network embedding methods can be cast as modeling the likelihood of a pairwise relationship between two nodes. For example, the goal of author identification task is to model the likelihood of a paper being written by an author (paper-author pairwise relationship). Existing task-guided embedding methods are node-centric in that they simply measure the similarity between the node embeddings to compute the likelihood of a pairwise relationship between two nodes. However, we claim that for task-guided embeddings, it is crucial to focus on directly modeling the pairwise relationship. In this paper, we propose a novel task-guided pair embedding framework in heterogeneous network, called TaPEm, that directly models the relationship between a pair of nodes that are related to a specific task (e.g., paper-author relationship in author identification). To this end, we 1) propose to learn a pair embedding under the guidance of its associated context path, i.e., a sequence of nodes between the pair, and 2) devise the pair validity classifier to distinguish whether the pair is valid with respect to the specific task at hand. By introducing pair embeddings that capture the semantics behind the pairwise relationships, we are able to learn the fine-grained pairwise relationship between two nodes, which is paramount for task-guided embedding methods. Extensive experiments on author identification task demonstrate that TaPEm outperforms the state-of-the-art methods, especially for authors with few publication records.
KW - Author Identification
KW - Deep Learning
KW - Heterogeneous Network
KW - Representation Learning
UR - http://www.scopus.com/inward/record.url?scp=85075435761&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85075435761&partnerID=8YFLogxK
U2 - 10.1145/3357384.3357982
DO - 10.1145/3357384.3357982
M3 - Conference contribution
AN - SCOPUS:85075435761
T3 - International Conference on Information and Knowledge Management, Proceedings
SP - 489
EP - 498
BT - CIKM 2019 - Proceedings of the 28th ACM International Conference on Information and Knowledge Management
PB - Association for Computing Machinery
T2 - 28th ACM International Conference on Information and Knowledge Management, CIKM 2019
Y2 - 3 November 2019 through 7 November 2019
ER -