Abstract
Membrane lipids control the cellular activity of kinases containing the Src homology 2 (SH2) domain through direct lipid–SH2 domain interactions. Here we report development of new nonlipidic small molecule inhibitors of the lipid–SH2 domain interaction that block the cellular activity of their host proteins. As a pilot study, we evaluated the efficacy of lipid–SH2 domain interaction inhibitors for spleen tyrosine kinase (Syk), which is implicated in hematopoietic malignancies, including acute myeloid leukemia (AML). An optimized inhibitor (WC36) specifically and potently suppressed oncogenic activities of Syk in AML cell lines and patient-derived AML cells. Unlike ATP-competitive Syk inhibitors, WC36 was refractory to de novo and acquired drug resistance due to its ability to block not only the Syk kinase activity, but also its noncatalytic scaffolding function that is linked to drug resistance. Collectively, our study shows that targeting lipid–protein interaction is a powerful approach to developing new small molecule drugs. [Figure not available: see fulltext.].
Original language | English (US) |
---|---|
Pages (from-to) | 239-250 |
Number of pages | 12 |
Journal | Nature chemical biology |
Volume | 19 |
Issue number | 2 |
DOIs | |
State | Published - Feb 2023 |
ASJC Scopus subject areas
- Molecular Biology
- Cell Biology