TY - GEN
T1 - Taming pre-trained language models with N-gram representations for low-resource domain adaptation
AU - Diao, Shizhe
AU - Xu, Ruijia
AU - Su, Hongjin
AU - Jiang, Yilei
AU - Song, Yan
AU - Zhang, Tong
N1 - Publisher Copyright:
© 2021 Association for Computational Linguistics
PY - 2021
Y1 - 2021
N2 - Large pre-trained models such as BERT are known to improve different downstream NLP tasks, even when such a model is trained on a generic domain. Moreover, recent studies have shown that when large domain-specific corpora are available, continued pre-training on domain-specific data can further improve the performance of in-domain tasks. However, this practice requires significant domain-specific data and computational resources which may not always be available. In this paper, we aim to adapt a generic pretrained model with a relatively small amount of domain-specific data. We demonstrate that by explicitly incorporating the multi-granularity information of unseen and domain-specific words via the adaptation of (word based) n-grams, the performance of a generic pretrained model can be greatly improved. Specifically, we introduce a Transformer-based Domain-aware N-gram Adaptor, T-DNA, to effectively learn and incorporate the semantic representation of different combinations of words in the new domain. Experimental results illustrate the effectiveness of T-DNA on eight low-resource downstream tasks from four domains. We show that T-DNA is able to achieve significant improvements compared to existing methods on most tasks using limited data with lower computational costs. Moreover, further analyses demonstrate the importance and effectiveness of both unseen words and the information of different granularities.
AB - Large pre-trained models such as BERT are known to improve different downstream NLP tasks, even when such a model is trained on a generic domain. Moreover, recent studies have shown that when large domain-specific corpora are available, continued pre-training on domain-specific data can further improve the performance of in-domain tasks. However, this practice requires significant domain-specific data and computational resources which may not always be available. In this paper, we aim to adapt a generic pretrained model with a relatively small amount of domain-specific data. We demonstrate that by explicitly incorporating the multi-granularity information of unseen and domain-specific words via the adaptation of (word based) n-grams, the performance of a generic pretrained model can be greatly improved. Specifically, we introduce a Transformer-based Domain-aware N-gram Adaptor, T-DNA, to effectively learn and incorporate the semantic representation of different combinations of words in the new domain. Experimental results illustrate the effectiveness of T-DNA on eight low-resource downstream tasks from four domains. We show that T-DNA is able to achieve significant improvements compared to existing methods on most tasks using limited data with lower computational costs. Moreover, further analyses demonstrate the importance and effectiveness of both unseen words and the information of different granularities.
UR - http://www.scopus.com/inward/record.url?scp=85118941812&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85118941812&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85118941812
T3 - ACL-IJCNLP 2021 - 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, Proceedings of the Conference
SP - 3336
EP - 3349
BT - ACL-IJCNLP 2021 - 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, Proceedings of the Conference
PB - Association for Computational Linguistics (ACL)
T2 - Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, ACL-IJCNLP 2021
Y2 - 1 August 2021 through 6 August 2021
ER -