TAKING A STEP BACK WITH KCAL: MULTI-CLASS KERNEL-BASED CALIBRATION FOR DEEP NEURAL NETWORKS

Zhen Lin, Shubhendu Trivedi, Jimeng Sun

Research output: Contribution to conferencePaperpeer-review

Abstract

Deep neural network (DNN) classifiers are often overconfident, producing miscalibrated class probabilities. In high-risk applications like healthcare, practitioners require fully calibrated probability predictions for decision-making. That is, conditioned on the prediction vector, every class' probability should be close to the predicted value. Most existing calibration methods either lack theoretical guarantees for producing calibrated outputs, reduce classification accuracy in the process, or only calibrate the predicted class. This paper proposes a new Kernel-based calibration method called KCal. Unlike existing calibration procedures, KCal does not operate directly on the logits or softmax outputs of the DNN. Instead, KCal learns a metric space on the penultimate-layer latent embedding and generates predictions using kernel density estimates on a calibration set. We first analyze KCal theoretically, showing that it enjoys a provable full calibration guarantee. Then, through extensive experiments across a variety of datasets, we show that KCal consistently outperforms baselines as measured by the calibration error and by proper scoring rules like the Brier Score. Our code is available at https://github.com/zlin7/KCal.

Original languageEnglish (US)
StatePublished - 2023
Event11th International Conference on Learning Representations, ICLR 2023 - Kigali, Rwanda
Duration: May 1 2023May 5 2023

Conference

Conference11th International Conference on Learning Representations, ICLR 2023
Country/TerritoryRwanda
CityKigali
Period5/1/235/5/23

ASJC Scopus subject areas

  • Language and Linguistics
  • Computer Science Applications
  • Education
  • Linguistics and Language

Fingerprint

Dive into the research topics of 'TAKING A STEP BACK WITH KCAL: MULTI-CLASS KERNEL-BASED CALIBRATION FOR DEEP NEURAL NETWORKS'. Together they form a unique fingerprint.

Cite this