System energy minimization via joint optimization of the DC-DC converter and the core

Rami A. Abdallah, Pradeep S. Shenoy, Naresh R Shanbhag, Philip T Krein

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This paper addresses the problem of designing energy-efficient embedded systems by jointly optimizing the power consumption of both the DC-DC converter and the computational core. Past work has shown that there exists a minimum energy operating point (MEOP) in the subthreshold region for computational cores (C-MEOP), at which the dynamic and leakage powers are balanced. The MEOP is defined by the 3-tuple consisting of the optimum energy consumption E *, optimum voltage V* and optimum frequency f*. First, we show that the DC-DC converter losses in dynamic voltage scaling (DVS) cause the overall system MEOP (S-MEOP) to differ significantly from C-MEOP. Simulations in a 130-nm, 1.2V commercial CMOS process show that operation at S-MEOP results in a 45.5% energy savings over operating at a core voltage V*C suggested by C-MEOP. The DC-DC converter efficiency is also improved by 2.2X. Second, we show that architectural techniques such as parallelization cause the S-MEOP to approach C-MEOP. Thus, it is sufficient to track C-MEOP a much easier task on-chip in order to account for process variations. We show that DC-DC converter losses reduces in subthreshold region but increases in superthreshold region when parallelization is employed. This observation leads us to propose a reconfigurable core architecture that improves the converter efficiency by 2.3X at C-MEOP, and makes energy consumption at S-MEOP and C-MEOP to be within 4% of each other, while improving throughput in the subthreshold region by at least 8X. Finally, we show that pipelining, which has been proposed to decrease core energy at C-MEOP while improving throughput [1], adversely affects the S-MEOP. The pipelined-core system energy at S-MEOP is 85% lower than the pipelined-core system energy when operating at the C-MEOP voltage V* C.

Original languageEnglish (US)
Title of host publicationIEEE/ACM International Symposium on Low Power Electronics and Design, ISLPED 2011
Pages97-102
Number of pages6
DOIs
StatePublished - Sep 19 2011
Event17th IEEE/ACM International Symposium on Low Power Electronics and Design, ISLPED 2011 - Fukuoka, Japan
Duration: Aug 1 2011Aug 3 2011

Publication series

NameProceedings of the International Symposium on Low Power Electronics and Design
ISSN (Print)1533-4678

Other

Other17th IEEE/ACM International Symposium on Low Power Electronics and Design, ISLPED 2011
CountryJapan
CityFukuoka
Period8/1/118/3/11

Keywords

  • DC-DC converter
  • Energy-aware systems
  • dynamic voltage scaling
  • power management
  • sub-threshold design

ASJC Scopus subject areas

  • Engineering(all)

Fingerprint Dive into the research topics of 'System energy minimization via joint optimization of the DC-DC converter and the core'. Together they form a unique fingerprint.

Cite this