TY - GEN
T1 - System-assisted analog mixed-signal design
AU - Shanbhag, Naresh
AU - Singer, Andrew
PY - 2011
Y1 - 2011
N2 - In this paper, we propose a system-assisted analog mixed-signal (SAMS) design paradigm whereby the mixed-signal components of a system are designed in an application-aware manner in order to minimize power and enhance robustness in nanoscale process technologies. In a SAMS-based communication link, the digital and analog blocks from the output of the information source at the transmitter to the input of the decision device in the receiver are treated as part of the composite channel. This comprehensive systems-level view enables us to compensate for impairments of not just the physical communication channel but also the intervening circuit blocks, most notably the analog/mixed-signal blocks. This is in stark contrast to what is done today, which is to treat the analog components in the transmitter and the analog front-end at the receiver as transparent waveform preservers. The benefits of the proposed system-aware mixed-signal design approach are illustrated in the context of analog-to-digital converters (ADCs) for high-speed links. CAD challenges that arise in designing system-assisted mixed-signal circuits are also described.
AB - In this paper, we propose a system-assisted analog mixed-signal (SAMS) design paradigm whereby the mixed-signal components of a system are designed in an application-aware manner in order to minimize power and enhance robustness in nanoscale process technologies. In a SAMS-based communication link, the digital and analog blocks from the output of the information source at the transmitter to the input of the decision device in the receiver are treated as part of the composite channel. This comprehensive systems-level view enables us to compensate for impairments of not just the physical communication channel but also the intervening circuit blocks, most notably the analog/mixed-signal blocks. This is in stark contrast to what is done today, which is to treat the analog components in the transmitter and the analog front-end at the receiver as transparent waveform preservers. The benefits of the proposed system-aware mixed-signal design approach are illustrated in the context of analog-to-digital converters (ADCs) for high-speed links. CAD challenges that arise in designing system-assisted mixed-signal circuits are also described.
UR - http://www.scopus.com/inward/record.url?scp=79957571075&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79957571075&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:79957571075
SN - 9783981080179
T3 - Proceedings -Design, Automation and Test in Europe, DATE
SP - 1491
EP - 1496
BT - Proceedings - Design, Automation and Test in Europe Conference and Exhibition, DATE 2011
T2 - 14th Design, Automation and Test in Europe Conference and Exhibition, DATE 2011
Y2 - 14 March 2011 through 18 March 2011
ER -