Synthetic Macrocycle Nanopore for Potassium-Selective Transmembrane Transport

Dan Qiao, Himanshu Joshi, Huangtianzhi Zhu, Fushi Wang, Yang Xu, Jia Gao, Feihe Huang, Aleksei Aksimentiev, Jiandong Feng

Research output: Contribution to journalArticlepeer-review


Reproducing the structure and function of biological membrane channels, synthetic nanopores have been developed for applications in membrane filtration technologies and biomolecular sensing. Stable stand-alone synthetic nanopores have been created from a variety of materials, including peptides, nucleic acids, synthetic polymers, and solid-state membranes. In contrast to biological nanopores, however, furnishing such synthetic nanopores with an atomically defined shape, including deliberate placement of each and every chemical group, remains a major challenge. Here, we introduce a chemosynthetic macromolecule-extended pillararene macrocycle (EPM)-as a chemically defined transmembrane nanopore that exhibits selective transmembrane transport. Our ionic current measurements reveal stable insertion of individual EPM nanopores into a lipid bilayer membrane and remarkable cation type-selective transport, with up to a 21-fold selectivity for potassium over sodium ions. Taken together, direct chemical synthesis offers a path to de novo design of a new class of synthetic nanopores with custom transport functionality imprinted in their atomically defined chemical structure.

Original languageEnglish (US)
Pages (from-to)15975-15983
Number of pages9
JournalJournal of the American Chemical Society
Issue number39
Early online dateAug 17 2021
StatePublished - Oct 6 2021

ASJC Scopus subject areas

  • General Chemistry
  • Biochemistry
  • Catalysis
  • Colloid and Surface Chemistry


Dive into the research topics of 'Synthetic Macrocycle Nanopore for Potassium-Selective Transmembrane Transport'. Together they form a unique fingerprint.

Cite this