Synthetic and Structural Studies on (RC5H4)4Ru4E40/2+(E = S, Se, Te): Mobile Metal-Metal Bonds within a Mixed-Valence RuIV/RuIII Cluster

Eric J. Houser, Thomas Rauchfuss, Scott R. Wilson

Research output: Contribution to journalArticlepeer-review

Abstract

Thermolysis of solutions of (MeC5H4)Ru(PPh3)2EH (E = S, Se) gives the cubane clusters (MeC5H4)4Ru4E4. For the case for E = S, the coproducts were shown to be PPh3 and H2. A rational synthesis of PPh4TeH is reported; this salt was employed in the preparation of (MeC5H4)4Ru4Te4. This Ru4Te4 cluster crystallizes in the monoclinic space group C2/c with a = 11.943(6) Å, b = 18.623(6) Å, c = 12.590(7) Å, V = 2792(4) Å3, and Z = 8. Structural trends show that the identity of the chalcogen more strongly affects the nonbonding Ru⋯Ru, Ru⋯E, and E⋯E interactions than the bonding interactions. The clusters undergo 2e oxidations as demonstrated by cyclic voltammetry studies. Chemical oxidations using (MeC5H4)2Fe+ gave salts of the dications (MeC5H4)4Ru4E4 2+ (E = S, Se, Te). The dicationic S4 and Se4 clusters exhibit dynamic 1H NMR properties such that at low temperatures signals for two CH3C5H4 groups were observed while at high temperatures the MeC5H4 groups appear equivalent. On the basis of coalescence temperatures, the barriers were estimated as ∼52 kJ/mol. In a test of the possible influence of steric factors on the dynamics, the DNMR properties of the new derivative (Me3SiC5H4)4Ru4S 4(PF6)2 were shown also to be very similar to the MeC5H4 clusters. The Me3SiC5H4 cluster crystallizes in the monoclinic space group P21/c with a = 18.828(2) Å, b = 12.421(1) Å, c = 21.451(1) Å, β = 92.442(1)°, V = 5012 Å3, and Z = 4. The structure confirms the presence of three Ru-Ru bonding distances. Variable-temperature NMR experiments on (MeC5H4)4-Fe4S4 2+ and (MeC5H4)4Ru4S4 gave no evidence of structural dynamics.

Original languageEnglish (US)
Pages (from-to)4069-4076
Number of pages8
JournalInorganic Chemistry
Volume32
Issue number19
DOIs
StatePublished - Jan 1 1993

ASJC Scopus subject areas

  • Physical and Theoretical Chemistry
  • Inorganic Chemistry

Fingerprint

Dive into the research topics of 'Synthetic and Structural Studies on (RC<sub>5</sub>H<sub>4</sub>)<sub>4</sub>Ru<sub>4</sub>E<sub>4</sub><sup>0/2+</sup>(E = S, Se, Te): Mobile Metal-Metal Bonds within a Mixed-Valence Ru<sup>IV</sup>/Ru<sup>III</sup> Cluster'. Together they form a unique fingerprint.

Cite this