Abstract
The development of highly efficient As(iii) adsorbents is critical to largely simplify the arsenic treatment process and lower its cost. For the first time, SnO2 nanospheres were demonstrated to possess a highly efficient As(iii) adsorption capability from water in a near neutral pH environment as predicted by the material criterion we recently developed for the selection of highly efficient arsenic adsorbents. These SnO2 nanospheres were synthesized by a simple and cost-effective hydrolysis process with the assistance of ethyl acetate under ambient conditions, which had a good dispersity, a narrow size distribution, a relatively large specific surface area, and a porous structure. A fast As(iii) adsorption was observed in the kinetics study on these SnO2 nanospheres, and their Langmuir adsorption capacity was determined to be ∼112.7 mg g-1 at pH ∼7. The As(iii) adsorption mechanism on SnO2 nanospheres was examined by both macroscopic and microscopic techniques, which demonstrated that it followed the inner-sphere complex model. These SnO2 nanospheres demonstrated effective As(iii) adsorption even with exceptionally high concentrations of co-existing ions, and a good regeneration capability by washing with NaOH solution.
Original language | English (US) |
---|---|
Pages (from-to) | 18207-18214 |
Number of pages | 8 |
Journal | Dalton Transactions |
Volume | 44 |
Issue number | 41 |
DOIs | |
State | Published - 2015 |
ASJC Scopus subject areas
- Inorganic Chemistry